【机器学习】4. 相似性比较(二值化数据)与相关度(correlation)

SMC

Simple Matching Coefficient 评估两组二进制数组相似性的参数

SMC = (f11 + f00) / (f01+f10+f11+f00)

其中,f11表示两组都为1的组合个数,f10表示第一组为1,第二组为0的组合个数。

这样做会有一个缺点,假设是比较稀疏的数据,如今天去哪一个地区,地区有成千上万个,但是去的只有一个地区。那么就会导致f00非常的大,如此计算的结果SMC必然很大,但是能够代表两组数据高度相关吗?这并不合理。

Jaccard

由于SMC不适配某些场景,Jaccard应运而生。

Jaccard剔除了f00,从而避免了f00过大导致的数值偏差。

J = f11 / (f01 + f10 + f11)

Cosine

  • 适用于二值化数据,也适用于非二值化数据。
  • 广泛用于文档的分类
    c o s ( A , B ) = A ∗ B ∣ ∣ A ∣ ∣ ∣ ∣ B ∣ ∣ cos(A,B) = \frac{A * B}{||A|| ||B||} cos(A,B)=∣∣A∣∣∣∣B∣∣A∗B
    ||A|| L2范式,即上一节讲的欧氏距离

A = [1 , 2, 3]

B = [4, 5, 6]

A*B = 1 * 4 + 2 * 5 + 3 * 6

||A|| = sqrt (1 * 1 + 2 * 2 + 3 * 3)

||B|| = sqrt (4 * 4 + 5 * 5 + 6 * 6)

0°相关

90°不相关

离的远则不相似,贴得近则相似

Correlation

c o r r ( X , Y ) = c o v a r ( x , y ) s t d ( x ) s t d ( y ) corr(X,Y) = \frac{covar(x,y)}{std(x)std(y)} corr(X,Y)=std(x)std(y)covar(x,y)
c o v a r ( x , y ) = 1 n − 1 ∑ k = 1 n ( x k − m e a n ( x ) ) ( y k − m e a n ( y ) ) covar(x,y) = \frac{1}{n-1}\sum^n_{k=1}(x_k - mean(x))(y_k - mean(y)) covar(x,y)=n−11k=1∑n(xk−mean(x))(yk−mean(y))
s t d ( x ) = ∑ k = 1 n ( x k − m e a n ( x ) ) 2 n − 1 std(x) = \sqrt{\frac{\sum^n_{k=1}(x_k - mean(x))^2}{n-1}} std(x)=n−1∑k=1n(xk−mean(x))2

  • mean: 均值
  • 范围[-1,1] -1是负相关, 0 是不相关, 1 是正相关
相关推荐
DP+GISer4 分钟前
自己制作遥感深度学习数据集进行遥感深度学习地物分类-试读
人工智能·深度学习·分类
victory04317 分钟前
TODO 分类任务指标计算和展示 准确率 F1 Recall
人工智能·机器学习·分类
rengang667 分钟前
07-逻辑回归:分析用于分类问题的逻辑回归模型及其数学原理
人工智能·算法·机器学习·分类·逻辑回归
居7然21 分钟前
京东开源王炸!JoyAgent-JDGenie如何重新定义智能体开发?
人工智能·开源·大模型·mcp
老兵发新帖25 分钟前
归一化分析3
人工智能
QYR_1137 分钟前
2025-2031年全球 MT 插芯市场全景分析报告:技术演进、供需格局与投资前景
人工智能·自然语言处理·机器翻译
mwq3012337 分钟前
从GPT-1到GPT-2的性能飞跃及其驱动因素分析
人工智能
程序员小远41 分钟前
常用的测试用例
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
IT学长编程43 分钟前
计算机毕业设计 基于EChants的海洋气象数据可视化平台设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·python·毕业设计·课程设计·毕业论文·海洋气象数据可视化平台