NL2Sql

关键前提:

1、如何理解表和字段;

2、如何把自然语言转化为正确的sql:含正确的表、where条件、结果字段等。

3、复杂sql的处理:可使用预定义的提示词+sql模板。

4、支持自定义注释。

效果的影响因素:

  1. 表和列注释的丰富程度:每张表及表中的列都添加注释,会提高查询的准确率。
  2. 用户问题与表中列注释的匹配程度:用户问题中的关键词和列注释保 持一致,语义上越接近,查询效果越好。
  3. 生成的SQL语句长度:SQL语句中涉及的列越少、条件越简单,查询 会越准确。
  4. SQL语句中的逻辑复杂程度:SQL语句中涉及的高级语法越少,查询越准确。

参考

https://help.aliyun.com/zh/polardb/polardb-for-mysql/user-guide/llm-based-nl2sql 自然语言到SQL语言转义(基于大语言模型的NL2SQL)

https://www.cnblogs.com/ting1/p/18145360

https://github.com/eosphoros-ai/DB-GPT

相关推荐
程序媛Dev14 小时前
用这个开源AI,实现了与数据库的“自然语言对话”
数据库·人工智能
leo__52021 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体1 天前
云厂商的AI决战
人工智能
njsgcs1 天前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派1 天前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch1 天前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中1 天前
第1章 机器学习基础
人工智能·机器学习
wyw00001 天前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI1 天前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20101 天前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化