NL2Sql

关键前提:

1、如何理解表和字段;

2、如何把自然语言转化为正确的sql:含正确的表、where条件、结果字段等。

3、复杂sql的处理:可使用预定义的提示词+sql模板。

4、支持自定义注释。

效果的影响因素:

  1. 表和列注释的丰富程度:每张表及表中的列都添加注释,会提高查询的准确率。
  2. 用户问题与表中列注释的匹配程度:用户问题中的关键词和列注释保 持一致,语义上越接近,查询效果越好。
  3. 生成的SQL语句长度:SQL语句中涉及的列越少、条件越简单,查询 会越准确。
  4. SQL语句中的逻辑复杂程度:SQL语句中涉及的高级语法越少,查询越准确。

参考

https://help.aliyun.com/zh/polardb/polardb-for-mysql/user-guide/llm-based-nl2sql 自然语言到SQL语言转义(基于大语言模型的NL2SQL)

https://www.cnblogs.com/ting1/p/18145360

https://github.com/eosphoros-ai/DB-GPT

相关推荐
小于不是小鱼呀4 分钟前
手撕 K-Means
人工智能·算法·机器学习
lilye6617 分钟前
精益数据分析(95/126):Socialight的定价转型启示——B2B商业模式的价格策略与利润优化
人工智能·数据挖掘·数据分析
Hero_HL31 分钟前
Towards Open World Object Detection概述(论文)
人工智能·目标检测·计算机视觉
远方160935 分钟前
10-Oracle 23 ai Vector Search 概述和参数
人工智能·oracle
fydw_71541 分钟前
Celery 核心概念详解及示例
人工智能·机器学习
audyxiao0011 小时前
计算机视觉顶刊《International Journal of Computer Vision》2025年5月前沿热点可视化分析
图像处理·人工智能·opencv·目标检测·计算机视觉·大模型·视觉检测
蹦蹦跳跳真可爱5891 小时前
Python----目标检测(训练YOLOV8网络)
人工智能·python·yolo·目标检测
张较瘦_1 小时前
[论文阅读] 人工智能+项目管理 | 当 PMBOK 遇见 AI:传统项目管理框架的破局之路
论文阅读·人工智能
Leinwin1 小时前
行业案例 | ASOS 借助 Azure AI Foundry(国际版)为年轻时尚爱好者打造惊喜体验
人工智能·microsoft·azure