小琳AI课堂:使用ChatGPT API搭建系统(二)

🎉 Python与ChatGPT API的奇妙之旅 🎉

大家好,欢迎回到小琳AI课堂!今天我们要探索的是如何在"使用ChatGPT API搭建系统"课程中,用Python代码与ChatGPT API进行有趣的互动。准备好了吗?让我们开始吧!🚀

📌 第一步:安装和导入库

首先,我们要安装并导入openai库,这是与ChatGPT交流的必备工具。安装很简单,就像把一块拼图放入我们的代码库中。🧩

💡 第二步:设置API密钥

接下来,我们需要从OpenAI获取API密钥,这就像是打开ChatGPT大门的钥匙。🔑 在代码中设置好这个密钥,我们就可以开始对话了。

📝 第三步:构造提示(Prompt)

这一步非常关键!我们需要设计一个清晰、具体的提示,这样ChatGPT才能给出我们想要的答案。就像是给ChatGPT一个地图,让它知道我们要去哪里。🗺️

📩 第四步:发送请求并获取回复

现在,我们使用openai.Completion.create()方法,把提示发送给ChatGPT,然后等待它的回复。这个过程就像是我们向ChatGPT扔出一个球,然后它把球接住并扔回来。🏀

📊 第五步:处理API响应

ChatGPT回复后,我们需要解析这些响应。这些响应通常是文本形式的,我们可以直接使用,也可以根据需要进行处理。就像是收到一封信,我们可以选择直接阅读,也可以摘录其中的重要信息。📜

🌟 应用实例

课程中还会提供一些实例,比如创建聊天机器人或自动化客服系统。这些实例就像是一些小项目,帮助我们更好地理解和运用所学知识。🏗️

📓 内置的Jupyter笔记本

最后,课程提供了Jupyter笔记本,让我们可以无缝尝试在课程中介绍的代码和实验室练习。这就像是一个实验台,我们可以在这里尽情尝试和探索。🔬

🤔 提示与提示链的区别

最后,我们来区分一下"prompt"和"提示链(Chaining Prompts)"。Prompt就像是给ChatGPT的一个指令或问题,而提示链则是一系列按照逻辑顺序排列的prompts,用于完成更复杂的任务。就像是建造一个乐高模型,每个prompt都是一块乐高积木,提示链则是将这些积木按照说明书组装起来。🧱

通过这部分的学习,大家能够掌握如何使用Python代码与ChatGPT API进行交互,进而开发出可以应用于各种场景的大型语言模型应用。希望大家都能从中学到新知识,觉得有趣又实用!🎈

好啦,本期的小琳AI课堂就到这里。希望大家喜欢这次的内容,我们下期再见!👋🌟

相关推荐
沐雪架构师13 分钟前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)1 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui1 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20252 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥2 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
云空3 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代3 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊85 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
一水鉴天5 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式
davenian5 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek