【Python】机器学习中的 K-均值聚类算法及其优缺点


紧紧握着 青花信物

信守着承诺

离别总在 失意中度过

记忆油膏 反复涂抹

无法愈合的伤口

你的回头 划伤了沉默

🎵 周传雄《青花》


K-均值聚类算法是一种常用的无监督学习算法,用于将数据集划分成K个不同的集群。该算法通过迭代的方式找到数据集中最好的集群划分,使得同一集群内的样本相似度最大,不同集群之间的相似度最小。

算法步骤如下:

  1. 初始化K个中心点,可以是随机选择或从数据集中选择。
  2. 将每个样本点分配到最近的中心点(通过计算距离来确定)所对应的集群。
  3. 根据已分配的样本点,更新每个集群的中心点。
  4. 重复步骤2和步骤3,直到中心点不再变化或达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 简单易实现:算法非常直观和易于理解,不需要太多的参数和复杂的计算。
  2. 可扩展性:适用于大规模数据集,可以处理具有数百万样本的数据。
  3. 适用于数值型数据:对于数值型数据集,K-均值聚类是一种有效的方法。

然而,K-均值聚类算法也有一些缺点:

  1. 对初始点和K值敏感:K-均值聚类对初始中心点的选择非常敏感,不同的初始点可能会导致不同的集群划分结果。此外,选择合适的K值也是一个挑战。
  2. 对噪声和异常值敏感:K-均值聚类对噪声和异常值比较敏感,可能会影响到最终的集群划分结果。
  3. 需要事先确定K值:在应用K-均值聚类之前,需要手动确定集群个数K,而在一些情况下,这是一个困难的任务。

总的来说,K-均值聚类算法是一种简单且广泛应用的聚类算法。它在实践中被广泛应用于数据挖掘、图像分割和模式识别等领域。然而,由于其一些局限性,需要在具体问题中综合考虑其优缺点来选择是否使用该算法。

相关推荐
蒙奇D索大13 分钟前
【算法】递归的艺术:从本质思想到递归树,深入剖析算法的性能权衡
经验分享·笔记·算法·改行学it
王哈哈^_^23 分钟前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
lskisme23 分钟前
springboot maven导入本地jar包
开发语言·python·pycharm
light_in_hand39 分钟前
内存区域划分——垃圾回收
java·jvm·算法
开心-开心急了43 分钟前
pyside6实现win10自动切换主题
开发语言·python·pyqt·pyside
mortimer1 小时前
一键实现人声伴奏分离:基于 `uv`, `FFmpeg` 和 `audio-separator` 的高效解决方案
python·ffmpeg·音视频开发
小安同学iter1 小时前
SQL50+Hot100系列(11.7)
java·算法·leetcode·hot100·sql50
_dindong2 小时前
笔试强训:Week-4
数据结构·c++·笔记·学习·算法·哈希算法·散列表
Sunhen_Qiletian2 小时前
Python 类继承详解:深度学习神经网络架构的构建艺术
python·深度学习·神经网络
星释2 小时前
Rust 练习册 :Nucleotide Codons与生物信息学
开发语言·算法·rust