【Python】机器学习中的 K-均值聚类算法及其优缺点


紧紧握着 青花信物

信守着承诺

离别总在 失意中度过

记忆油膏 反复涂抹

无法愈合的伤口

你的回头 划伤了沉默

🎵 周传雄《青花》


K-均值聚类算法是一种常用的无监督学习算法,用于将数据集划分成K个不同的集群。该算法通过迭代的方式找到数据集中最好的集群划分,使得同一集群内的样本相似度最大,不同集群之间的相似度最小。

算法步骤如下:

  1. 初始化K个中心点,可以是随机选择或从数据集中选择。
  2. 将每个样本点分配到最近的中心点(通过计算距离来确定)所对应的集群。
  3. 根据已分配的样本点,更新每个集群的中心点。
  4. 重复步骤2和步骤3,直到中心点不再变化或达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 简单易实现:算法非常直观和易于理解,不需要太多的参数和复杂的计算。
  2. 可扩展性:适用于大规模数据集,可以处理具有数百万样本的数据。
  3. 适用于数值型数据:对于数值型数据集,K-均值聚类是一种有效的方法。

然而,K-均值聚类算法也有一些缺点:

  1. 对初始点和K值敏感:K-均值聚类对初始中心点的选择非常敏感,不同的初始点可能会导致不同的集群划分结果。此外,选择合适的K值也是一个挑战。
  2. 对噪声和异常值敏感:K-均值聚类对噪声和异常值比较敏感,可能会影响到最终的集群划分结果。
  3. 需要事先确定K值:在应用K-均值聚类之前,需要手动确定集群个数K,而在一些情况下,这是一个困难的任务。

总的来说,K-均值聚类算法是一种简单且广泛应用的聚类算法。它在实践中被广泛应用于数据挖掘、图像分割和模式识别等领域。然而,由于其一些局限性,需要在具体问题中综合考虑其优缺点来选择是否使用该算法。

相关推荐
星河耀银海4 分钟前
人工智能从入门到精通:机器学习基础算法实战与应用
人工智能·算法·机器学习
落叶,听雪7 分钟前
河南AI建站
人工智能·python
liliangcsdn10 分钟前
VAE和DDPM模型训练差异的探索
人工智能·机器学习
nice_lcj52014 分钟前
数据结构之堆:从概念到应用全解析(附TOP-K经典问题)
java·数据结构·算法
无言(* ̄(エ) ̄)18 分钟前
进程---Linux/C语言
java·开发语言·算法
漫随流水21 分钟前
leetcode算法(429.N叉树的层序遍历)
数据结构·算法·leetcode·二叉树
漫随流水25 分钟前
leetcode算法(116.填充每个节点的下一个右侧节点指针)
数据结构·算法·leetcode·二叉树
Narrastory25 分钟前
混合高斯模型全解析:原理,应用与代码实现
机器学习
_OP_CHEN34 分钟前
【算法基础篇】(四十四)数论之欧拉定理与扩展欧拉定理深度解析:从降幂到超大规模幂运算
c++·算法·蓝桥杯·算法竞赛·欧拉定理·扩展欧拉定理·acm/icpc
lfwh37 分钟前
Java 中基于 DBSCAN 算法的车辆交汇点计算实现详解
java·开发语言·算法