【Python】机器学习中的 K-均值聚类算法及其优缺点


紧紧握着 青花信物

信守着承诺

离别总在 失意中度过

记忆油膏 反复涂抹

无法愈合的伤口

你的回头 划伤了沉默

🎵 周传雄《青花》


K-均值聚类算法是一种常用的无监督学习算法,用于将数据集划分成K个不同的集群。该算法通过迭代的方式找到数据集中最好的集群划分,使得同一集群内的样本相似度最大,不同集群之间的相似度最小。

算法步骤如下:

  1. 初始化K个中心点,可以是随机选择或从数据集中选择。
  2. 将每个样本点分配到最近的中心点(通过计算距离来确定)所对应的集群。
  3. 根据已分配的样本点,更新每个集群的中心点。
  4. 重复步骤2和步骤3,直到中心点不再变化或达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 简单易实现:算法非常直观和易于理解,不需要太多的参数和复杂的计算。
  2. 可扩展性:适用于大规模数据集,可以处理具有数百万样本的数据。
  3. 适用于数值型数据:对于数值型数据集,K-均值聚类是一种有效的方法。

然而,K-均值聚类算法也有一些缺点:

  1. 对初始点和K值敏感:K-均值聚类对初始中心点的选择非常敏感,不同的初始点可能会导致不同的集群划分结果。此外,选择合适的K值也是一个挑战。
  2. 对噪声和异常值敏感:K-均值聚类对噪声和异常值比较敏感,可能会影响到最终的集群划分结果。
  3. 需要事先确定K值:在应用K-均值聚类之前,需要手动确定集群个数K,而在一些情况下,这是一个困难的任务。

总的来说,K-均值聚类算法是一种简单且广泛应用的聚类算法。它在实践中被广泛应用于数据挖掘、图像分割和模式识别等领域。然而,由于其一些局限性,需要在具体问题中综合考虑其优缺点来选择是否使用该算法。

相关推荐
二川bro2 分钟前
AutoML自动化机器学习:Python实战指南
python·机器学习·自动化
dragoooon343 分钟前
[优选算法专题八.分治-归并 ——NO.49 翻转对]
算法
AI科技星13 分钟前
为什么宇宙无限大?
开发语言·数据结构·经验分享·线性代数·算法
杨超越luckly18 分钟前
基于 Overpass API 的城市电网基础设施与 POI 提取与可视化
python·数据可视化·openstreetmap·电力数据·overpass api
Zero-Talent1 小时前
位运算算法
算法
不穿格子的程序员1 小时前
从零开始刷算法——双指针-三数之和&接雨水
算法·双指针
q***23571 小时前
python的sql解析库-sqlparse
数据库·python·sql
18你磊哥2 小时前
Django WEB 简单项目创建与结构讲解
前端·python·django·sqlite
无限进步_2 小时前
C语言数组元素删除算法详解:从基础实现到性能优化
c语言·开发语言·windows·git·算法·github·visual studio
月殇_木言2 小时前
Python期末复习
开发语言·python