OpenCV杂项图像变换(1)自适应阈值处理函数adaptiveThreshold()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数对数组应用自适应阈值。

该函数根据以下公式将灰度图像转换为二值图像:

  • 对于 THRESH_BINARY:
    t e x t d s t ( x , y ) = { maxValue 如果 src ( x , y ) > T ( x , y ) 0 否则 \\text{dst}(x, y) =\begin{cases}\ \text{maxValue} & \text{如果 } \text{src}(x, y) > T(x, y) \\ 0 & \text{否则} \end{cases} textdst(x,y)={ maxValue0如果 src(x,y)>T(x,y)否则

  • 对于THRESH_BINARY_INV:
    dst ( x , y ) = { 0 如果 src ( x , y ) > T ( x , y ) maxValue 否则 \text{dst}(x, y) = \begin{cases} 0 & \text{如果 } \text{src}(x, y) > T(x, y) \\ \text{maxValue} & \text{否则} \end{cases} dst(x,y)={0maxValue如果 src(x,y)>T(x,y)否则

    其中 T ( x , y ) T(x,y) T(x,y) 是为每个像素单独计算的阈值(参见 adaptiveMethod 参数)。

adaptiveThreshold() 函数是 OpenCV 中用于实现自适应阈值处理的一种方法。这种处理方式特别适用于照明条件变化较大的场景,因为它能够根据图像局部区域的亮度自动调整阈值。

该函数可以原地处理图像

函数原型

cpp 复制代码
void cv::adaptiveThreshold	
(
	InputArray 	src,
	OutputArray 	dst,
	double 	maxValue,
	int 	adaptiveMethod,
	int 	thresholdType,
	int 	blockSize,
	double 	C 
)		

参数

  • 参数src 源 8 位单通道图像。
  • 参数dst 目标图像,具有与 src 相同的大小和类型。
  • 参数maxValue 分配给满足条件的像素的非零值。
  • 参数adaptiveMethod 使用的自适应阈值算法,参见 AdaptiveThresholdTypes。使用 BORDER_REPLICATE | BORDER_ISOLATED 来处理边界。
  • 参数thresholdType 阈值类型,必须是 THRESH_BINARY 或 THRESH_BINARY_INV,参见 ThresholdTypes。
  • 参数blockSize 用于计算像素阈值的像素邻域大小:3, 5, 7 等等。
  • 参数C 从均值或加权均值中减去的常数(参见下面的详细信息)。通常它是正数,但也可能是零或负数。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace cv;

int main(int argc, char** argv)
{
    // 读取图像
    Mat image = imread("/media/dingxin/data/study/OpenCV/sources/images/sun2.jpg", IMREAD_GRAYSCALE);
    
    if (image.empty()) {
        std::cerr << "Error: Could not open or find the image." << std::endl;
        return -1;
    }
    
    // 创建输出图像
    Mat binaryImage;
    
    // 应用自适应阈值处理
    adaptiveThreshold(image, binaryImage, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 3, 2);
    
    // 显示结果
    namedWindow("Original Image", WINDOW_NORMAL);
    imshow("Original Image", image);
    
    namedWindow("Binary Image", WINDOW_NORMAL);
    imshow("Binary Image", binaryImage);
    
    waitKey(0);
    
    return 0;
}

运行结果

相关推荐
北京耐用通信1 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20091 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟2 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播2 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训2 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
懷淰メ2 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的输电隐患检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·deepseek·监测系统·输电隐患
YIN_尹3 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55183 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora3 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大3 小时前
关于前馈神经网络
人工智能·深度学习·神经网络