大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(正在更新!)

章节内容

上节完成了如下的内容:

  • Flink 基本介绍
  • 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构


再次回到最初的起点,Hello Word Count!

定义

流处理是指对持续不断的数据流进行实时处理。Flink 的流处理模式非常适合处理持续产生的数据,例如来自传感器、日志记录系统或金融交易的数据流。

核心概念

  • 无界数据流:流处理通常处理无界数据流,即数据流没有明确的结束点,持续不断地产生。
  • 事件时间:Flink 支持基于事件时间的处理,能够处理乱序和延迟数据,使得处理更加精确。事件时间指的是数据在其产生源头的时间。
  • 窗口操作:在流处理过程中,通常需要将数据按时间窗口(如滑动窗口、滚动窗口、会话窗口)进行分组,以便执行聚合或其他操作。
  • 状态管理:Flink 支持有状态的流处理,这意味着处理每条数据时,可以记住之前的数据状态。例如,在流中计算一个累积的总和或频率。

定义

批处理是指对静态的、有界的数据集进行处理。这种处理通常用于一次性的大规模数据分析,如定期的业务报告生成、数据转换和加载任务。

核心概念

  • 有界数据集:批处理通常处理有界数据集,即数据集是固定大小的,有明确的开始和结束点。
  • 任务并行化:在批处理模式下,Flink 会将数据集划分为多个子任务,并行执行这些任务,以加快处理速度。
  • DataSet API:Flink 的 DataSet API 提供了一组高层次的操作符,用于对批数据集执行各种操作,如映射(map)、过滤(filter)、联接(join)和聚合(aggregate)。

单词统计(批数据)

需求说明

统计一个文件中各个单词出现的次数,把统计结果输出到文件

  • 读取数据源
  • 处理数据源
  • 将读取到的数据源文件中的每一行根据空格切分
  • 将切分好的每个单词拼接1
  • 根据单词聚合(将相同的单词放到一起)
  • 累加相同的单词(单词后面的1进行累加)
  • 保存处理结果

导入依赖

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>11</maven.compiler.source>
        <maven.compiler.target>11</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.11.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.11.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>1.11.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.12</artifactId>
            <version>1.11.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>1.11.1</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>

</project>

编写代码

java 复制代码
package icu.wzk;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.core.fs.FileSystem;
import org.apache.flink.util.Collector;


public class WordCount {

    public static void main(String[] args) throws Exception {
        String inPath = "word-count/word-count.txt";
        String outPath = "word-count/word-count-result.csv";
        // 获取Flink批处理执行环境
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        // 读取文件中的内容
        DataSet<String> text = env.readTextFile(inPath);
        // 对数据进行处理
        DataSet<Tuple2<String, Integer>> dataSet = text
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public void flatMap(String line, Collector<Tuple2<String, Integer>> collector) throws Exception {
                        for (String word : line.split(" ")) {
                            collector.collect(new Tuple2<>(word, 1));
                        }
                    }
                })
                .groupBy(0)
                .sum(1);
        dataSet
                .writeAsCsv(outPath, "\n", " ", FileSystem.WriteMode.OVERWRITE)
                .setParallelism(1);
        // 触发执行程序
        env.execute("Word Count");
    }

}

测试数据

shell 复制代码
Stateful Computations over Data Streams
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams.
Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale.
Correctness guarantees
Exactly-once state consistency
Event-time processing
Sophisticated late data handling
SQL on Stream & Batch Data
DataStream API & DataSet API
ProcessFunction (Time & State)
Flexible deployment
High-availability setup
Savepoints

运行测试

结果数据

查看 word-count/word-count-result.csv 打开即可看到以下内容:

shell 复制代码
Stateful 1
any 1
common 1
computations 2
on 1
setup 1
state 1
streams. 1
unbounded 1
& 3
Data 2
DataStream 1
High-availability 1
for 1
perform 1
run 1
to 1
Event-time 1
Flexible 1
Sophisticated 1
framework 1
is 1
scale. 1
Exactly-once 1
ProcessFunction 1
Stream 1
a 1
been 1
handling 1
in 1
late 1
processing 2
Batch 1
DataSet 1
at 2
bounded 1
consistency 1
deployment 1
distributed 1
engine 1
has 1
API 2
Apache 1
Flink 2
SQL 1
Streams 1
all 1
designed 1
over 2
Computations 1
Savepoints 1
and 3
data 2
environments, 1
in-memory 1
speed 1
stateful 1
(Time 1
Correctness 1
State) 1
cluster 1
guarantees 1

单词统计(流数据)

需求说明

Socket模拟实时发送单词,使用Flink实时接收数据,对指定时间窗口内(如5秒)的数据进行聚合统计,每隔1秒汇总计算一次,并且把时间窗口内计算结果打印出来。

编写代码

Server部分

编写一个Socket服务,提供一定的数据流。

java 复制代码
package icu.wzk;


import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.net.InetSocketAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Random;

public class WordCountServer {

    public static void main(String[] args) throws IOException, InterruptedException {
        String ip = "localhost";
        int port = 9999;
        Random random = new Random();
        ServerSocket serverSocket = new ServerSocket();
        InetSocketAddress address = new InetSocketAddress(ip, port);
        serverSocket.bind(address);
        Socket socket = serverSocket.accept();
        OutputStream outputStream = socket.getOutputStream();
        PrintWriter writer = new PrintWriter(outputStream, true);
        for (int i = 0; i < 1000; i ++) {
            int number = random.nextInt(100);
            System.out.println(number);
            writer.println(number);
            Thread.sleep((random.nextInt(900) + 100));
        }
        socket.close();
        serverSocket.close();
    }

}

Flink部分

连接到上述的Server部分

java 复制代码
package icu.wzk;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;


public class WordCount2 {

    public static void main(String[] args) throws Exception {
        String ip = "localhost";
        int port = 9999;

        // 获取 Flink 执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 获取 Socket 输入数据
        DataStreamSource<String> textStream = env.socketTextStream(ip, port, "\n");
        SingleOutputStreamOperator<Tuple2<String, Integer>> wordCount = textStream
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                        String[] splits = value.split("\\s");
                        for (String word : splits) {
                            out.collect(new Tuple2<>(word, 1));
                        }
                    }
                });
        SingleOutputStreamOperator<Tuple2<String, Integer>> word = wordCount
                .keyBy(new KeySelector<Tuple2<String, Integer>, Object>() {
                    @Override
                    public Object getKey(Tuple2<String, Integer> value) throws Exception {
                        return value.f0;
                    }
                })
                .timeWindow(Time.seconds(5), Time.seconds(1))
                .sum(1);

        // 输出并运行
        word.print();
        env.execute("Word Count");
    }

}

观察结果

Server部分

shell 复制代码
35
18
84
72
24
51
15
13
65
98
55
68
22
84
17

Flink部分

shell 复制代码
3> (35,1)
4> (18,1)
3> (35,1)
5> (84,1)
4> (18,1)
6> (72,1)
3> (35,1)
5> (84,1)
5> (24,1)
3> (35,1)
6> (72,1)
4> (18,1)
7> (51,1)
5> (24,1)
5> (84,1)
4> (15,1)
6> (72,1)
7> (51,1)
3> (35,1)
4> (15,1)
4> (18,1)

运行结果过程截图如下所示:

过程总结

  • 获得一个执行环境
  • 加载、创建 初始化环境
  • 指定数据操作的算子
  • 指定结果数据存放位置
  • 调用Execute触发执行程序

注意:Flink程序是延迟计算的,只有最后调用execute()方法的时候才会真正的触发执行程序。

相关推荐
吾日三省吾码7 分钟前
JVM 性能调优
java
弗拉唐1 小时前
springBoot,mp,ssm整合案例
java·spring boot·mybatis
oi772 小时前
使用itextpdf进行pdf模版填充中文文本时部分字不显示问题
java·服务器
少说多做3432 小时前
Android 不同情况下使用 runOnUiThread
android·java
知兀2 小时前
Java的方法、基本和引用数据类型
java·笔记·黑马程序员
蓝黑20202 小时前
IntelliJ IDEA常用快捷键
java·ide·intellij-idea
Ysjt | 深2 小时前
C++多线程编程入门教程(优质版)
java·开发语言·jvm·c++
shuangrenlong3 小时前
slice介绍slice查看器
java·ubuntu
牧竹子3 小时前
对原jar包解压后修改原class文件后重新打包为jar
java·jar