Yolo环境搭建(深度学习基础环境)

需要安装的东西

  1. CUDA
  2. cuDnn
  3. 魔法

一、CUDA安装(Windows10环境)

第一:下载驱动

第二:查看显卡支持的最高CUDA的版本,以便下载对应的CUDA安装包

第三:确定CUDA版本对应的cuDNN版本,这个其实不用太关注,因为在cudnn的下载页面会列出

1、下载驱动

下载连接:驱动下载
手动驱动搜索图

第一行:选择游戏显卡

第二行:显卡系别(Notebooks为笔记本)

第三行:详细显卡信号

第四行:系统环境

2、查看支持的cuda版本

快捷键:win+r 打开命令行

输入以下命令:

nvidia-smi

运行结果图

主要关注如上三部分:显卡支持的最高版本(可以比这个低)

3、下载CUDA

如下我将演示11.6版本的下载安装

下载链接: 11.6
11.6选项图

第一行:选择操作系统

第二行:选择位数

第三行:选择操作系统版本

第四行:选择本地下载

4、CUDA安装

需要记住安装路径,然后 无脑安装到这一步

把CUDA选一下,还需要注意一点,如果 你前面没有安装vs,直接安装的这个,需要把CUDA里面的Visual Studio Integration取消勾选,否则会安装不成功

然后继续无脑安装

5、检查是否安装成功

快捷键:win+r 打开命令行

nvcc -V

出现这个,说明安装成功了

二、下载cuDNN

下载链接:cudnn下载

下载需要注册账户,你们自行注册登录,成功后可以直接下载了,这里不过多阐述

下载得到:cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip

解压

把这三个文件夹的文件分别拷贝到CUDA安装目录对应的(bin、include、lib)文件夹中即可。

三、下载安装魔法

下载路径:一元机场https://xingjiabijichang.com/#/knowledge

因为文件不是很大,选择一元是最划算的

网站中有说明文档,自行观看学习就行了,不过多阐述了

四、torch安装

1、创建新环境

在YOLO源码文件夹中打开命令行

输入以下命令

conda create -n YOLO python=3.9

解释:conda 创建 -n 自定义的环境名称(我这里用的是YOLO命名) 选择python版本

途中需要输入Y
创建完成图片

2、激活新环境

activate YOLO

可以看到括号中的YOLO,说明已经进入自定义的YOLO环境当中

3、新环境中安装必要的库

首先下载YOLO所需要的库文件

pip install -r .\requirements.txt

下载视图

等待安装完成之后,输入以下指令查看安装的库

pip list

发现有torch,但不是GPU版本的,使用需要删除他

pip uninstall torch torchvision torchaudio

过程中输入Y即可

4、下载torch (先必须魔法)

输入指令:

pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 -f https://download.pytorch.org/whl/torch_stable.html  -i https://pypi.tuna.tsinghua.edu.cn/simple

安装完成之后,输入:

python

然后继续输入以下命令

import torch
from torch.backends import cudnn
 
x = torch.Tensor([1.0])
xx = x.cuda()
print("torch版本:", torch.__version__)
print("torch_cudatoolkit版本:", torch.version.cuda)
print("torch_cuda_可用:", torch.cuda.is_available())
print("torch_cuda_计算:", xx)
print("torch_cudnn_可用:", cudnn.is_acceptable(xx))

输出结果为True,即为安装成功!

 >>> print("torch_cudnn_可用:", cudnn.is_acceptable(xx))
torch_cudnn_可用: True

五、运行YOLO代码查看结果

1、选择刚刚创建的环境(YOLO)

2、打开detect.py文件,点击运行

3、运行完毕,结果保存在了exp4中

六、常见问题

当安装完成好torch后,引用时,发现还是无法找到模块,并提醒dll文件有问题

解决方法:

1、下载dll文件

下载链接:文件下载

得到如上文件,将这个文件导入自定义的YOLO环境路径中\Lib\site-pages\torch\lib中

2、将dll文件移入环境中

在命令行中输入

conda info -e

可以看到你创建的环境以及路径

将文件放入这个目录中

然后就成功了!

相关推荐
小馒头学python4 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯14 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠16 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
千天夜25 分钟前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
Debroon26 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
测试界的酸菜鱼29 分钟前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~33 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨34 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画38 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云40 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr