C++ 两线交点程序(Program for Point of Intersection of Two Lines)

示例图

给定对应于线 AB 的点 A 和 B 以及对应于线 PQ 的点 P 和 Q,找到这些线的交点。这些点在 2D 平面中给出,并带有其 X 和 Y 坐标。示例:

输入:A = (1, 1), B = (4, 4)

C = (1, 8), D = (2, 4)

输出:给定直线 AB 和 CD 的交点

是:(2.4, 2.4)

输入:A = (0, 1), B = (0, 4)

C = (1, 8), D = (1, 4)

输出:给定直线 AB 和 CD 平行。

首先,假设我们有两个点 (x 1 , y 1 ) 和 (x 2 , y 2 )。现在,我们找到由这些点形成的直线方程。假设给定的直线为:

  1. a1x + b1y = c1
  2. a2x + b2y = c2

现在我们必须解这两个方程来找到交点。 为了求解,我们将 1 乘以 b 2并将 2 乘以 b 1这样我们得到 a 1 b 2 x + b 1 b 2 y = c 1 b 2 a 2 b 1 x + b 2 b 1 y = c 2 b 1减去这些我们得到 (a 1 b 2 -- a 2 b 1 ) x = c 1 b 2 -- c 2 b 1这样我们得到了 x 的值。 类似地,我们可以找到 y 的值。 (x, y) 给出了交点。**注意:**这给出了两条线的交点,但如果我们给出的是线段而不是直线,我们还必须重新检查这样计算出的点是否实际上位于两条线段上。如果线段由点 (x 1 , y 1 ) 和 (x 2 , y 2 ) 指定,那么要检查 (x, y) 是否在线段上,我们只需检查

  • 最小值 (x 1 , x 2 ) <= x <= 最大值 (x 1 , x 2 )
  • 最小值 (y 1 , y 2 ) <= y <= 最大值 (y 1 , y 2 )

上述实现的伪代码:

复制代码
determinant = a1 b2 - a2 b1
if (determinant == 0)
{
    // Lines are parallel
}
else
{
    x = (c1b2 - c2b1)/determinant
    y = (a1c2 - a2c1)/determinant
}

这些可以通过首先直接获得斜率,然后找到直线的截距来推导出来。

// C++ Implementation. To find the point of

// intersection of two lines

#include <bits/stdc++.h>

using namespace std;

// This pair is used to store the X and Y

// coordinates of a point respectively

#define pdd pair<double, double>

// Function used to display X and Y coordinates

// of a point

void displayPoint(pdd P)

{

cout << "(" << P.first << ", " << P.second

<< ")" << endl;

}

pdd lineLineIntersection(pdd A, pdd B, pdd C, pdd D)

{

// Line AB represented as a1x + b1y = c1

double a1 = B.second - A.second;

double b1 = A.first - B.first;

double c1 = a1*(A.first) + b1*(A.second);

// Line CD represented as a2x + b2y = c2

double a2 = D.second - C.second;

double b2 = C.first - D.first;

double c2 = a2*(C.first)+ b2*(C.second);

double determinant = a1*b2 - a2*b1;

if (determinant == 0)

{

// The lines are parallel. This is simplified

// by returning a pair of FLT_MAX

return make_pair(FLT_MAX, FLT_MAX);

}

else

{

double x = (b2*c1 - b1*c2)/determinant;

double y = (a1*c2 - a2*c1)/determinant;

return make_pair(x, y);

}

}

// Driver code

int main()

{

pdd A = make_pair(1, 1);

pdd B = make_pair(4, 4);

pdd C = make_pair(1, 8);

pdd D = make_pair(2, 4);

pdd intersection = lineLineIntersection(A, B, C, D);

if (intersection.first == FLT_MAX &&

intersection.second==FLT_MAX)

{

cout << "The given lines AB and CD are parallel.\n";

}

else

{

// NOTE: Further check can be applied in case

// of line segments. Here, we have considered AB

// and CD as lines

cout << "The intersection of the given lines AB "

"and CD is: ";

displayPoint(intersection);

}

return 0;

}

输出:

给定直线 AB 和 CD 的交点为:(2.4,2.4)

时间复杂度: O(1)

辅助空间: O(1)

相关推荐
源码之家5 分钟前
机器学习:基于大数据二手房房价预测与分析系统 可视化 线性回归预测算法 Django框架 链家网站 二手房 计算机毕业设计✅
大数据·算法·机器学习·数据分析·spark·线性回归·推荐算法
Lv Jianwei10 分钟前
Longest Palindromic Substring最长回文子串-学习动态规划Dynamic Programming(DP)
算法
WWZZ202526 分钟前
快速上手大模型:深度学习7(实践:卷积层)
人工智能·深度学习·算法·机器人·大模型·卷积神经网络·具身智能
小张成长计划..26 分钟前
【C++】2:cin和cout的介绍和使用,函数的缺省参数
c++
再卷也是菜1 小时前
C++篇(17)哈希拓展学习
c++·哈希
l1t1 小时前
用SQL求解advent of code 2024年23题
数据库·sql·算法
“愿你如星辰如月”1 小时前
Linux:进程间通信
linux·运维·服务器·c++·操作系统
10岁的博客1 小时前
二维差分算法高效解靶场问题
java·服务器·算法
轻微的风格艾丝凡1 小时前
锂电池 SOC 估计技术综述:成熟算法、新颖突破与车企应用实践
算法·汽车
Codeking__1 小时前
动态规划算法经典问题——01背包问题
算法·动态规划