C++ 两线交点程序(Program for Point of Intersection of Two Lines)

示例图

给定对应于线 AB 的点 A 和 B 以及对应于线 PQ 的点 P 和 Q,找到这些线的交点。这些点在 2D 平面中给出,并带有其 X 和 Y 坐标。示例:

输入:A = (1, 1), B = (4, 4)

C = (1, 8), D = (2, 4)

输出:给定直线 AB 和 CD 的交点

是:(2.4, 2.4)

输入:A = (0, 1), B = (0, 4)

C = (1, 8), D = (1, 4)

输出:给定直线 AB 和 CD 平行。

首先,假设我们有两个点 (x 1 , y 1 ) 和 (x 2 , y 2 )。现在,我们找到由这些点形成的直线方程。假设给定的直线为:

  1. a1x + b1y = c1
  2. a2x + b2y = c2

现在我们必须解这两个方程来找到交点。 为了求解,我们将 1 乘以 b 2并将 2 乘以 b 1这样我们得到 a 1 b 2 x + b 1 b 2 y = c 1 b 2 a 2 b 1 x + b 2 b 1 y = c 2 b 1减去这些我们得到 (a 1 b 2 -- a 2 b 1 ) x = c 1 b 2 -- c 2 b 1这样我们得到了 x 的值。 类似地,我们可以找到 y 的值。 (x, y) 给出了交点。**注意:**这给出了两条线的交点,但如果我们给出的是线段而不是直线,我们还必须重新检查这样计算出的点是否实际上位于两条线段上。如果线段由点 (x 1 , y 1 ) 和 (x 2 , y 2 ) 指定,那么要检查 (x, y) 是否在线段上,我们只需检查

  • 最小值 (x 1 , x 2 ) <= x <= 最大值 (x 1 , x 2 )
  • 最小值 (y 1 , y 2 ) <= y <= 最大值 (y 1 , y 2 )

上述实现的伪代码:

复制代码
determinant = a1 b2 - a2 b1
if (determinant == 0)
{
    // Lines are parallel
}
else
{
    x = (c1b2 - c2b1)/determinant
    y = (a1c2 - a2c1)/determinant
}

这些可以通过首先直接获得斜率,然后找到直线的截距来推导出来。

// C++ Implementation. To find the point of

// intersection of two lines

#include <bits/stdc++.h>

using namespace std;

// This pair is used to store the X and Y

// coordinates of a point respectively

#define pdd pair<double, double>

// Function used to display X and Y coordinates

// of a point

void displayPoint(pdd P)

{

cout << "(" << P.first << ", " << P.second

<< ")" << endl;

}

pdd lineLineIntersection(pdd A, pdd B, pdd C, pdd D)

{

// Line AB represented as a1x + b1y = c1

double a1 = B.second - A.second;

double b1 = A.first - B.first;

double c1 = a1*(A.first) + b1*(A.second);

// Line CD represented as a2x + b2y = c2

double a2 = D.second - C.second;

double b2 = C.first - D.first;

double c2 = a2*(C.first)+ b2*(C.second);

double determinant = a1*b2 - a2*b1;

if (determinant == 0)

{

// The lines are parallel. This is simplified

// by returning a pair of FLT_MAX

return make_pair(FLT_MAX, FLT_MAX);

}

else

{

double x = (b2*c1 - b1*c2)/determinant;

double y = (a1*c2 - a2*c1)/determinant;

return make_pair(x, y);

}

}

// Driver code

int main()

{

pdd A = make_pair(1, 1);

pdd B = make_pair(4, 4);

pdd C = make_pair(1, 8);

pdd D = make_pair(2, 4);

pdd intersection = lineLineIntersection(A, B, C, D);

if (intersection.first == FLT_MAX &&

intersection.second==FLT_MAX)

{

cout << "The given lines AB and CD are parallel.\n";

}

else

{

// NOTE: Further check can be applied in case

// of line segments. Here, we have considered AB

// and CD as lines

cout << "The intersection of the given lines AB "

"and CD is: ";

displayPoint(intersection);

}

return 0;

}

输出:

给定直线 AB 和 CD 的交点为:(2.4,2.4)

时间复杂度: O(1)

辅助空间: O(1)

相关推荐
Swift社区1 分钟前
LeetCode 403 - 青蛙过河
算法·leetcode·职场和发展
地平线开发者2 分钟前
三种 Badcase 精度验证方案详解与 hbm_infer 部署实录
算法·自动驾驶
oioihoii6 分钟前
深入理解 C++ 现代类型推导:从 auto 到 decltype 与完美转发
java·开发语言·c++
报错小能手10 分钟前
项目——基于C/S架构的预约系统平台 (1)
开发语言·c++·笔记·学习·架构
papership13 分钟前
【入门级-算法-5、数值处理算法:高精度的减法】
算法·1024程序员节
lingran__17 分钟前
算法沉淀第十天(牛客2025秋季算法编程训练联赛2-基础组 和 奇怪的电梯)
c++·算法
DuHz28 分钟前
基于MIMO FMCW雷达的二维角度分析多径抑制技术——论文阅读
论文阅读·物联网·算法·信息与通信·毫米波雷达
Dragon_D.1 小时前
排序算法大全——插入排序
算法·排序算法·c·学习方法
大数据张老师1 小时前
数据结构——红黑树
数据结构·算法·红黑树
自在极意功。2 小时前
动态规划核心原理与高级实战:从入门到精通(Java全解)
java·算法·动态规划·最优子结构·重叠子问题