spark集成到hadoop

这篇文章是在hadoop的基础上集成spark,关于hadoop环境的搭建可以参考我之前的博文https://blog.csdn.net/wbo112/article/details/124654197?spm=1001.2014.3001.5501

本次使用的是spark-3.3.1-bin-hadoop3.tgz

ip 主机名
192.168.68.121 hadoop1
192.168.68.122 hadoop2
192.168.68.123 hadoop3

后续web 界面访问有可能直接是机器名,所以需要把IP与主机 加到本地hosts文件中

解压spark-3.3.1-bin-hadoop3.tgz到目录下

进入解压后的目录/home/hadoop/software/spark-3.3.1-bin-hadoop3

执行spark自带计算圆周率示例代码

在spark目录中执行如下代码

复制代码
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.3.1.jar \
10

输出日志中有这么一句Spark web UI at http://hadoop1:4040,在spark程序运行中可以看到任务运行的各种状态(spark任务结束前面的web-ui地址也就打不开了)。

上面的示例是scala版本的示例,源码在/home/hadoop/software/spark-3.3.1-bin-hadoop3/examples/src/main/scala/org/apache/spark/examples

spark-yarn

解压spark-3.3.1-bin-hadoop3.tgz到目录下到/home/hadoop/software/spark-yarn/目录下

在spark-yarn配置文件中增加

执行如下命令

/home/hadoop/software/spark-yarn/spark-3.3.1-bin-hadoop3/conf 进入spark配置文件目录

cp spark-env.sh.template spark-env.sh 复制模板配置文件

修改spark-env.sh增加如下内容

复制代码
YARN_CONF_DIR=/home/hadoop/software/hadoop-3.2.3/etc/hadoop   #注意,这是hadoop目录

再次进入就可以将任务在yarn上运行

复制代码
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.3.1.jar \
10

进入yarnweb-ui yarn也能看到执行记录

再次进入``/home/hadoop/software/spark-yarn/spark-3.3.1-bin-hadoop3/conf`

执行如下命令

cp spark-defaults.conf.template spark-defaults.conf

配置日志存储路径

复制代码
spark.eventLog.enabled          true
spark.eventLog.dir               hdfs://hadoop1:9000/directory   #这个是hdfs的地址,目录不存在,要手动创建
spark.yarn.historyServer.address=hadoop1:19889   #这个端口是spark的端口,必须没被占用
spark.history.ui.port=19889        #这个端口是spark的端口,必须没被占用

再次进入spark-env.sh配置历史服务器信息,参数信息同上

复制代码
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=19888
-Dspark.history.fs.logDirectory=hdfs://hadoop1:10020/directory
-Dspark.history.retainedApplications=30"   #指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。

再次回到/home/hadoop/software/spark-yarn/spark-3.3.1-bin-hadoop3/目录执行如下命令,启动历史服务器

sbin/start-history-server.sh.

再次执行

复制代码
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.3.1.jar \
10

再次进入yarn的web-ui,找到上面任务的历史执行记录。

点击这里的History,就会进入我们刚才配置的spark的历史任务的web-ui界面。如我本地是Spark Pi - Spark Jobs http://hadoop1:19889/history/application_1723817139150_0002/jobs/,就能看到spark执行信息。

相关推荐
戈云 11066 分钟前
Spark-SQL
人工智能·spark
TDengine (老段)1 小时前
TDengine 语言连接器(Node.js)
大数据·c语言·数据库·物联网·node.js·时序数据库·tdengine
火龙谷3 小时前
【hive】Hive对数据库,对表的操作(一)
数据库·hive·hadoop
jinan8864 小时前
加密软件的发展:从古典密码到量子安全
大数据·运维·服务器·网络·安全·web安全
CC数学建模5 小时前
第十七届“华中杯”大学生数学建模挑战赛题目A题 晶硅片产销策略优化 完整成品 代码 模型 思路 分享
大数据
bulucc5 小时前
回归,git 分支开发操作命令
大数据·git·elasticsearch
计算机毕设定制辅导-无忧学长6 小时前
TDengine 存储引擎剖析:数据文件与索引设计(二)
大数据·时序数据库·tdengine
计算机毕设定制辅导-无忧学长6 小时前
TDengine 存储引擎剖析:数据文件与索引设计(一)
大数据·时序数据库·tdengine
ZStack开发者社区6 小时前
ZStack文档DevOps平台建设实践
java·大数据·开发语言·devops