spark集成到hadoop

这篇文章是在hadoop的基础上集成spark,关于hadoop环境的搭建可以参考我之前的博文https://blog.csdn.net/wbo112/article/details/124654197?spm=1001.2014.3001.5501

本次使用的是spark-3.3.1-bin-hadoop3.tgz

ip 主机名
192.168.68.121 hadoop1
192.168.68.122 hadoop2
192.168.68.123 hadoop3

后续web 界面访问有可能直接是机器名,所以需要把IP与主机 加到本地hosts文件中

解压spark-3.3.1-bin-hadoop3.tgz到目录下

进入解压后的目录/home/hadoop/software/spark-3.3.1-bin-hadoop3

执行spark自带计算圆周率示例代码

在spark目录中执行如下代码

复制代码
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.3.1.jar \
10

输出日志中有这么一句Spark web UI at http://hadoop1:4040,在spark程序运行中可以看到任务运行的各种状态(spark任务结束前面的web-ui地址也就打不开了)。

上面的示例是scala版本的示例,源码在/home/hadoop/software/spark-3.3.1-bin-hadoop3/examples/src/main/scala/org/apache/spark/examples

spark-yarn

解压spark-3.3.1-bin-hadoop3.tgz到目录下到/home/hadoop/software/spark-yarn/目录下

在spark-yarn配置文件中增加

执行如下命令

/home/hadoop/software/spark-yarn/spark-3.3.1-bin-hadoop3/conf 进入spark配置文件目录

cp spark-env.sh.template spark-env.sh 复制模板配置文件

修改spark-env.sh增加如下内容

复制代码
YARN_CONF_DIR=/home/hadoop/software/hadoop-3.2.3/etc/hadoop   #注意,这是hadoop目录

再次进入就可以将任务在yarn上运行

复制代码
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.3.1.jar \
10

进入yarnweb-ui yarn也能看到执行记录

再次进入``/home/hadoop/software/spark-yarn/spark-3.3.1-bin-hadoop3/conf`

执行如下命令

cp spark-defaults.conf.template spark-defaults.conf

配置日志存储路径

复制代码
spark.eventLog.enabled          true
spark.eventLog.dir               hdfs://hadoop1:9000/directory   #这个是hdfs的地址,目录不存在,要手动创建
spark.yarn.historyServer.address=hadoop1:19889   #这个端口是spark的端口,必须没被占用
spark.history.ui.port=19889        #这个端口是spark的端口,必须没被占用

再次进入spark-env.sh配置历史服务器信息,参数信息同上

复制代码
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=19888
-Dspark.history.fs.logDirectory=hdfs://hadoop1:10020/directory
-Dspark.history.retainedApplications=30"   #指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。

再次回到/home/hadoop/software/spark-yarn/spark-3.3.1-bin-hadoop3/目录执行如下命令,启动历史服务器

sbin/start-history-server.sh.

再次执行

复制代码
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.3.1.jar \
10

再次进入yarn的web-ui,找到上面任务的历史执行记录。

点击这里的History,就会进入我们刚才配置的spark的历史任务的web-ui界面。如我本地是Spark Pi - Spark Jobs http://hadoop1:19889/history/application_1723817139150_0002/jobs/,就能看到spark执行信息。

相关推荐
专业开发者5 小时前
奇迹由此而生:回望 Wi-Fi® 带来的诸多意外影响
大数据
尔嵘5 小时前
git操作
大数据·git·elasticsearch
古德new5 小时前
openFuyao AI大数据场景加速技术实践指南
大数据·人工智能
金融小师妹6 小时前
非农数据LSTM时序建模强化未来降息预期,GVX-GARCH驱动金价4300点位多空博弈
大数据·人工智能·深度学习
yumgpkpm6 小时前
Iceberg在Cloudera CDP集群详细操作步骤
大数据·人工智能·hive·zookeeper·spark·开源·cloudera
鹧鸪云光伏6 小时前
如何选择光储一体化方案设计软件
大数据·人工智能·光伏·光储
CES_Asia7 小时前
机器人“奥运会”燃动北京——CES Asia 2026全球机器人性能挑战赛与展览定档
大数据·人工智能·机器人
yumgpkpm8 小时前
Iceberg在Hadoop集群使用步骤(适配AI大模型)
大数据·hadoop·分布式·华为·zookeeper·开源·cloudera
字节跳动数据平台9 小时前
6000字技术向拆解 “大晓机器人”携手火山引擎多模态数据湖探索视频处理新路径
大数据
金融小师妹9 小时前
AI算法视角下非农夜冲击波来袭,黄金高位区间震荡态势的深度神经网络解析
大数据·深度学习·1024程序员节