论文速读|I-CTRL:通过受限强化学习使人型机器人模仿和控制

论文地址:https://arxiv.org/pdf/2405.08726

I-CTRL(Imitation to Control Humanoid Robots Through Constrained Reinforcement Learning)是一个旨在解决现有人类运动到人型机器人的转换方法在物理可行性上的不足的框架。该框架通过在非物理基础的转换后的运动上施加受限的强化学习算法,提高了运动相似度,并确保了跟随参考人类轨迹的能力。研究团队对四种不同的人型机器人(Bruce、Atlas、H1 和 JVRC-1)进行了测试,证明了 I-CTRL 在不同机器人和大规模动作数据集上的泛化能力。通过使用简单且独特的奖励函数,I-CTRL 能够使用单一的强化学习代理来跟踪大约 10,000 种不同的动态运动。该研究的贡献包括:1) 实现了多种人型机器人的物理相容的人类 ähnliche 运动学习;2) 设计了一种新的样本高效的受限强化学习算法,该算法能够更好地保留目标运动的风格,并且能够泛化到大约 10,000 种运动,使用单一的策略和共享的奖励;3) 对四种不同的人型机器人进行了定量和定性的评估,展示了模型在不调整奖励的情况下的灵活性。

论文初读:

相关推荐
paopaokaka_luck4 分钟前
基于SpringBoot+Vue的社区诊所管理系统(AI问答、webSocket实时聊天、Echarts图形化分析)
vue.js·人工智能·spring boot·后端·websocket
工藤学编程5 分钟前
零基础学AI大模型之RAG系统链路解析与Document Loaders多案例实战
人工智能
大千AI助手13 分钟前
加权分位数直方图:提升机器学习效能的关键技术
人工智能·机器学习·xgboost·直方图·加权直方图·特征分裂
星期天要睡觉31 分钟前
深度学习——基于ResNet18迁移学习的图像分类模型
人工智能·python·分类·迁移学习
sunkl_40 分钟前
JoyAgent问数多表关联Bug修复
人工智能·自然语言处理
AI数据皮皮侠1 小时前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
强哥之神1 小时前
从零理解 KV Cache:大语言模型推理加速的核心机制
人工智能·深度学习·机器学习·语言模型·llm·kvcache
中达瑞和-高光谱·多光谱1 小时前
多光谱图像颜色特征用于茶叶分类的研究进展
人工智能·分类·数据挖掘
格林威2 小时前
UV 紫外相机在半导体制造领域的应用
人工智能·数码相机·opencv·计算机视觉·视觉检测·制造·uv