论文速读|I-CTRL:通过受限强化学习使人型机器人模仿和控制

论文地址:https://arxiv.org/pdf/2405.08726

I-CTRL(Imitation to Control Humanoid Robots Through Constrained Reinforcement Learning)是一个旨在解决现有人类运动到人型机器人的转换方法在物理可行性上的不足的框架。该框架通过在非物理基础的转换后的运动上施加受限的强化学习算法,提高了运动相似度,并确保了跟随参考人类轨迹的能力。研究团队对四种不同的人型机器人(Bruce、Atlas、H1 和 JVRC-1)进行了测试,证明了 I-CTRL 在不同机器人和大规模动作数据集上的泛化能力。通过使用简单且独特的奖励函数,I-CTRL 能够使用单一的强化学习代理来跟踪大约 10,000 种不同的动态运动。该研究的贡献包括:1) 实现了多种人型机器人的物理相容的人类 ähnliche 运动学习;2) 设计了一种新的样本高效的受限强化学习算法,该算法能够更好地保留目标运动的风格,并且能够泛化到大约 10,000 种运动,使用单一的策略和共享的奖励;3) 对四种不同的人型机器人进行了定量和定性的评估,展示了模型在不调整奖励的情况下的灵活性。

论文初读:

相关推荐
埃菲尔铁塔_CV算法2 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR2 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️8 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
好喜欢吃红柚子25 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python30 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯39 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠42 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon1 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨1 小时前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测