论文速读|I-CTRL:通过受限强化学习使人型机器人模仿和控制

论文地址:https://arxiv.org/pdf/2405.08726

I-CTRL(Imitation to Control Humanoid Robots Through Constrained Reinforcement Learning)是一个旨在解决现有人类运动到人型机器人的转换方法在物理可行性上的不足的框架。该框架通过在非物理基础的转换后的运动上施加受限的强化学习算法,提高了运动相似度,并确保了跟随参考人类轨迹的能力。研究团队对四种不同的人型机器人(Bruce、Atlas、H1 和 JVRC-1)进行了测试,证明了 I-CTRL 在不同机器人和大规模动作数据集上的泛化能力。通过使用简单且独特的奖励函数,I-CTRL 能够使用单一的强化学习代理来跟踪大约 10,000 种不同的动态运动。该研究的贡献包括:1) 实现了多种人型机器人的物理相容的人类 ähnliche 运动学习;2) 设计了一种新的样本高效的受限强化学习算法,该算法能够更好地保留目标运动的风格,并且能够泛化到大约 10,000 种运动,使用单一的策略和共享的奖励;3) 对四种不同的人型机器人进行了定量和定性的评估,展示了模型在不调整奖励的情况下的灵活性。

论文初读:

相关推荐
Shawn_Shawn3 小时前
人工智能入门概念介绍
人工智能
极限实验室3 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9965 小时前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥5 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉5 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明5 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习6 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考6 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234566 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能
人邮异步社区7 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习