数学基础 -- 线性代数之线性变换

线性变换

线性变换 是线性代数中的一个基本概念,它描述了一种特殊的函数,该函数将一个向量空间中的向量映射到另一个向量空间中,并且保持向量加法和标量乘法的性质。具体来说,设 V V V 和 W W W 是两个向量空间,一个映射 T : V → W T: V \rightarrow W T:V→W 被称为线性变换,当且仅当对于任意的向量 u , v ∈ V \mathbf{u}, \mathbf{v} \in V u,v∈V 和标量 c ∈ R c \in \mathbb{R} c∈R (或 C \mathbb{C} C),以下两条性质成立:

  1. 加法保持性 : T ( u + v ) = T ( u ) + T ( v ) T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) T(u+v)=T(u)+T(v)
  2. 标量乘法保持性 : T ( c u ) = c T ( u ) T(c\mathbf{u}) = cT(\mathbf{u}) T(cu)=cT(u)

例子

  1. 二维平面上的旋转:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将二维平面上的向量绕原点旋转 θ \theta θ 角度的变换。若 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则经过变换 T T T 后:
      T ( v ) = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ( x y ) = ( x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ ) T(\mathbf{v}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix} T(v)=(cosθsinθ−sinθcosθ)(xy)=(xcosθ−ysinθxsinθ+ycosθ)
      这个变换保持了向量加法和标量乘法的性质,因此是一个线性变换。
  2. 二维平面上的缩放:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将向量 v \mathbf{v} v 进行均匀缩放的变换。对于缩放系数 k k k, T ( v ) = k v T(\mathbf{v}) = k\mathbf{v} T(v)=kv。如果 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则:
      T ( v ) = k ( x y ) = ( k x k y ) T(\mathbf{v}) = k\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix} T(v)=k(xy)=(kxky)
      这个变换同样保持了向量加法和标量乘法的性质,是一个线性变换。
  3. 投影变换:

    • 设 T : R 3 → R 2 T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 T:R3→R2 是一个将三维向量投影到二维平面的变换。假设投影到 x y xy xy 平面上,则:
      T ( x y z ) = ( x y ) T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} T xyz =(xy)
      这个变换也保持了向量加法和标量乘法的性质,因此是线性变换。

这些例子展示了线性变换如何将向量空间中的向量映射到另一个向量空间,并且不改变向量的线性结构。

相关推荐
Blossom.1181 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
薄荷很无奈1 小时前
CuML + Cudf (RAPIDS) 加速python数据分析脚本
python·机器学习·数据分析·gpu算力
Y1nhl9 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
小墙程序员13 小时前
机器学习入门(二)线性回归
机器学习
追逐☞13 小时前
机器学习(7)——K均值聚类
机器学习·均值算法·聚类
追逐☞14 小时前
机器学习(9)——随机森林
人工智能·随机森林·机器学习
云天徽上16 小时前
【数据可视化-28】2017-2025 年每月产品零售价数据可视化分析
机器学习·信息可视化·数据挖掘·数据分析·零售
硅谷秋水16 小时前
CoT-Drive:利用 LLM 和思维链提示实现自动驾驶的高效运动预测
人工智能·机器学习·语言模型·自动驾驶
IT古董17 小时前
【漫话机器学习系列】214.停用词(Stop Words)
人工智能·机器学习