数学基础 -- 线性代数之线性变换

线性变换

线性变换 是线性代数中的一个基本概念,它描述了一种特殊的函数,该函数将一个向量空间中的向量映射到另一个向量空间中,并且保持向量加法和标量乘法的性质。具体来说,设 V V V 和 W W W 是两个向量空间,一个映射 T : V → W T: V \rightarrow W T:V→W 被称为线性变换,当且仅当对于任意的向量 u , v ∈ V \mathbf{u}, \mathbf{v} \in V u,v∈V 和标量 c ∈ R c \in \mathbb{R} c∈R (或 C \mathbb{C} C),以下两条性质成立:

  1. 加法保持性 : T ( u + v ) = T ( u ) + T ( v ) T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) T(u+v)=T(u)+T(v)
  2. 标量乘法保持性 : T ( c u ) = c T ( u ) T(c\mathbf{u}) = cT(\mathbf{u}) T(cu)=cT(u)

例子

  1. 二维平面上的旋转:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将二维平面上的向量绕原点旋转 θ \theta θ 角度的变换。若 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则经过变换 T T T 后:
      T ( v ) = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ( x y ) = ( x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ ) T(\mathbf{v}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix} T(v)=(cosθsinθ−sinθcosθ)(xy)=(xcosθ−ysinθxsinθ+ycosθ)
      这个变换保持了向量加法和标量乘法的性质,因此是一个线性变换。
  2. 二维平面上的缩放:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将向量 v \mathbf{v} v 进行均匀缩放的变换。对于缩放系数 k k k, T ( v ) = k v T(\mathbf{v}) = k\mathbf{v} T(v)=kv。如果 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则:
      T ( v ) = k ( x y ) = ( k x k y ) T(\mathbf{v}) = k\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix} T(v)=k(xy)=(kxky)
      这个变换同样保持了向量加法和标量乘法的性质,是一个线性变换。
  3. 投影变换:

    • 设 T : R 3 → R 2 T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 T:R3→R2 是一个将三维向量投影到二维平面的变换。假设投影到 x y xy xy 平面上,则:
      T ( x y z ) = ( x y ) T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} T xyz =(xy)
      这个变换也保持了向量加法和标量乘法的性质,因此是线性变换。

这些例子展示了线性变换如何将向量空间中的向量映射到另一个向量空间,并且不改变向量的线性结构。

相关推荐
Blossom.1181 天前
大模型知识蒸馏实战:从Qwen-72B到Qwen-7B的压缩艺术
大数据·人工智能·python·深度学习·算法·机器学习·pygame
StarPrayers.1 天前
K-means 聚类
机器学习·kmeans·聚类
极客学术工坊1 天前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
庄周迷蝴蝶1 天前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
徐行tag2 天前
RLS(递归最小二乘)算法详解
人工智能·算法·机器学习
ChoSeitaku2 天前
线代强化NO6|矩阵|例题|小结
算法·机器学习·矩阵
月下倩影时2 天前
视觉学习篇——机器学习模型评价指标
人工智能·学习·机器学习
不去幼儿园2 天前
【强化学习】可证明安全强化学习(Provably Safe RL)算法详细介绍
人工智能·python·算法·安全·机器学习·强化学习
月疯2 天前
自相关实操流程
人工智能·算法·机器学习
跨境海王哥2 天前
Facebook矩阵引流:从防封机制拆解
线性代数·矩阵·facebook