数学基础 -- 线性代数之线性变换

线性变换

线性变换 是线性代数中的一个基本概念,它描述了一种特殊的函数,该函数将一个向量空间中的向量映射到另一个向量空间中,并且保持向量加法和标量乘法的性质。具体来说,设 V V V 和 W W W 是两个向量空间,一个映射 T : V → W T: V \rightarrow W T:V→W 被称为线性变换,当且仅当对于任意的向量 u , v ∈ V \mathbf{u}, \mathbf{v} \in V u,v∈V 和标量 c ∈ R c \in \mathbb{R} c∈R (或 C \mathbb{C} C),以下两条性质成立:

  1. 加法保持性 : T ( u + v ) = T ( u ) + T ( v ) T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) T(u+v)=T(u)+T(v)
  2. 标量乘法保持性 : T ( c u ) = c T ( u ) T(c\mathbf{u}) = cT(\mathbf{u}) T(cu)=cT(u)

例子

  1. 二维平面上的旋转:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将二维平面上的向量绕原点旋转 θ \theta θ 角度的变换。若 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则经过变换 T T T 后:
      T ( v ) = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ( x y ) = ( x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ ) T(\mathbf{v}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix} T(v)=(cosθsinθ−sinθcosθ)(xy)=(xcosθ−ysinθxsinθ+ycosθ)
      这个变换保持了向量加法和标量乘法的性质,因此是一个线性变换。
  2. 二维平面上的缩放:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将向量 v \mathbf{v} v 进行均匀缩放的变换。对于缩放系数 k k k, T ( v ) = k v T(\mathbf{v}) = k\mathbf{v} T(v)=kv。如果 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则:
      T ( v ) = k ( x y ) = ( k x k y ) T(\mathbf{v}) = k\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix} T(v)=k(xy)=(kxky)
      这个变换同样保持了向量加法和标量乘法的性质,是一个线性变换。
  3. 投影变换:

    • 设 T : R 3 → R 2 T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 T:R3→R2 是一个将三维向量投影到二维平面的变换。假设投影到 x y xy xy 平面上,则:
      T ( x y z ) = ( x y ) T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} T xyz =(xy)
      这个变换也保持了向量加法和标量乘法的性质,因此是线性变换。

这些例子展示了线性变换如何将向量空间中的向量映射到另一个向量空间,并且不改变向量的线性结构。

相关推荐
AI小云1 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
L.fountain1 天前
机器学习shap分析案例
人工智能·机器学习
weixin_429630261 天前
机器学习-第一章
人工智能·机器学习
Cedric11131 天前
机器学习中的距离总结
人工智能·机器学习
淘小白_TXB21961 天前
头条号矩阵运营经验访谈记录
线性代数·矩阵
寒月霜华1 天前
机器学习-数据标注
人工智能·机器学习
Godspeed Zhao2 天前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383922 天前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
救救孩子把2 天前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
蒋星熠2 天前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai