数学基础 -- 线性代数之线性变换

线性变换

线性变换 是线性代数中的一个基本概念,它描述了一种特殊的函数,该函数将一个向量空间中的向量映射到另一个向量空间中,并且保持向量加法和标量乘法的性质。具体来说,设 V V V 和 W W W 是两个向量空间,一个映射 T : V → W T: V \rightarrow W T:V→W 被称为线性变换,当且仅当对于任意的向量 u , v ∈ V \mathbf{u}, \mathbf{v} \in V u,v∈V 和标量 c ∈ R c \in \mathbb{R} c∈R (或 C \mathbb{C} C),以下两条性质成立:

  1. 加法保持性 : T ( u + v ) = T ( u ) + T ( v ) T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) T(u+v)=T(u)+T(v)
  2. 标量乘法保持性 : T ( c u ) = c T ( u ) T(c\mathbf{u}) = cT(\mathbf{u}) T(cu)=cT(u)

例子

  1. 二维平面上的旋转:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将二维平面上的向量绕原点旋转 θ \theta θ 角度的变换。若 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则经过变换 T T T 后:
      T ( v ) = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ( x y ) = ( x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ ) T(\mathbf{v}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix} T(v)=(cosθsinθ−sinθcosθ)(xy)=(xcosθ−ysinθxsinθ+ycosθ)
      这个变换保持了向量加法和标量乘法的性质,因此是一个线性变换。
  2. 二维平面上的缩放:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将向量 v \mathbf{v} v 进行均匀缩放的变换。对于缩放系数 k k k, T ( v ) = k v T(\mathbf{v}) = k\mathbf{v} T(v)=kv。如果 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则:
      T ( v ) = k ( x y ) = ( k x k y ) T(\mathbf{v}) = k\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix} T(v)=k(xy)=(kxky)
      这个变换同样保持了向量加法和标量乘法的性质,是一个线性变换。
  3. 投影变换:

    • 设 T : R 3 → R 2 T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 T:R3→R2 是一个将三维向量投影到二维平面的变换。假设投影到 x y xy xy 平面上,则:
      T ( x y z ) = ( x y ) T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} T xyz =(xy)
      这个变换也保持了向量加法和标量乘法的性质,因此是线性变换。

这些例子展示了线性变换如何将向量空间中的向量映射到另一个向量空间,并且不改变向量的线性结构。

相关推荐
末世灯光7 小时前
时间序列入门第一问:它和普通数据有什么不一样?(附 3 类典型案例)
人工智能·python·机器学习·时序数据
Gitpchy9 小时前
Day 20 奇异值SVD分解
python·机器学习
weixin_429630269 小时前
实验二-决策树-葡萄酒
算法·决策树·机器学习
吃饭睡觉发paper11 小时前
Learning Depth Estimation for Transparent and Mirror Surfaces
人工智能·机器学习·计算机视觉
Aaplloo13 小时前
机器学习作业七
人工智能·机器学习
Cathy Bryant13 小时前
矩阵乘以向量?向量乘以向量?
笔记·神经网络·考研·机器学习·数学建模
小白狮ww14 小时前
LiveCC 首个视频解说大模型开源,比赛视频也能轻松拿捏!
人工智能·深度学习·机器学习
hhhdd_202514 小时前
5 款 PDF 翻译工具深度测评:从格式到免费权限全解析
人工智能·机器学习
lky不吃香菜15 小时前
深度学习入门:从“流水线工人”到“变形金刚”的架构漫游指南
人工智能·机器学习
JJJJ_iii17 小时前
【机器学习05】神经网络、模型表示、前向传播、TensorFlow实现
人工智能·pytorch·python·深度学习·神经网络·机器学习·tensorflow