数学基础 -- 线性代数之线性变换

线性变换

线性变换 是线性代数中的一个基本概念,它描述了一种特殊的函数,该函数将一个向量空间中的向量映射到另一个向量空间中,并且保持向量加法和标量乘法的性质。具体来说,设 V V V 和 W W W 是两个向量空间,一个映射 T : V → W T: V \rightarrow W T:V→W 被称为线性变换,当且仅当对于任意的向量 u , v ∈ V \mathbf{u}, \mathbf{v} \in V u,v∈V 和标量 c ∈ R c \in \mathbb{R} c∈R (或 C \mathbb{C} C),以下两条性质成立:

  1. 加法保持性 : T ( u + v ) = T ( u ) + T ( v ) T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) T(u+v)=T(u)+T(v)
  2. 标量乘法保持性 : T ( c u ) = c T ( u ) T(c\mathbf{u}) = cT(\mathbf{u}) T(cu)=cT(u)

例子

  1. 二维平面上的旋转:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将二维平面上的向量绕原点旋转 θ \theta θ 角度的变换。若 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则经过变换 T T T 后:
      T ( v ) = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ( x y ) = ( x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ ) T(\mathbf{v}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix} T(v)=(cosθsinθ−sinθcosθ)(xy)=(xcosθ−ysinθxsinθ+ycosθ)
      这个变换保持了向量加法和标量乘法的性质,因此是一个线性变换。
  2. 二维平面上的缩放:

    • 设 T : R 2 → R 2 T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 T:R2→R2 是一个将向量 v \mathbf{v} v 进行均匀缩放的变换。对于缩放系数 k k k, T ( v ) = k v T(\mathbf{v}) = k\mathbf{v} T(v)=kv。如果 v = ( x y ) \mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} v=(xy),则:
      T ( v ) = k ( x y ) = ( k x k y ) T(\mathbf{v}) = k\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix} T(v)=k(xy)=(kxky)
      这个变换同样保持了向量加法和标量乘法的性质,是一个线性变换。
  3. 投影变换:

    • 设 T : R 3 → R 2 T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 T:R3→R2 是一个将三维向量投影到二维平面的变换。假设投影到 x y xy xy 平面上,则:
      T ( x y z ) = ( x y ) T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} T xyz =(xy)
      这个变换也保持了向量加法和标量乘法的性质,因此是线性变换。

这些例子展示了线性变换如何将向量空间中的向量映射到另一个向量空间,并且不改变向量的线性结构。

相关推荐
后端小张18 小时前
【AI 解析】Gemini 3 全面解析:从认知到落地
人工智能·机器学习·ai·语言模型·chatgpt·imagen·gemini
西西弗Sisyphus18 小时前
线性代数 - 矩阵的等价标准形
线性代数·矩阵·等价标准形
AI大模型学徒19 小时前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
limenga10219 小时前
奇异值分解(SVD):深度理解神经网络的内在结构
人工智能·深度学习·神经网络·机器学习
秋邱19 小时前
【机器学习】深入解析线性回归模型
人工智能·机器学习·线性回归
●VON20 小时前
人工智能、机器学习与深度学习:从概念到实践
人工智能·深度学习·机器学习
学习中的数据喵20 小时前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
LO嘉嘉VE1 天前
学习笔记十五:连续与缺失值
机器学习
墨绿色的摆渡人1 天前
零碎的知识点(二十):3D 高斯为什么是椭球
决策树·机器学习·3d