深度学习系列72:torch-tensorrt入门

1. 安装

坑非常多,清华源阿里源都不行。使用官网源下载,这里的121可以改成你需要的东西:

python -m pip install torch torch-tensorrt tensorrt --extra-index-url https://download.pytorch.org/whl/cu121

2. 原理

我们来看一个实例:这是一个用于支持 torchscript 到 TensorRT 转换的项目。上面的代码用于将 addmm 运算展开成数个算子,方便后续映射 TensorRT 算子。

复制代码
void UnpackAddMM(std::shared_ptr<torch::jit::Graph>& graph) {
  // TensorRT implicitly adds a flatten layer in front of FC layers if necessary
  // 用于匹配的模式
  std::string addmm_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %out: Tensor = aten::addmm(%b, %x, %w, %beta, %alpha)
      return (%out))IR";
  // 用于替换的模式
  std::string mm_add_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %mm: Tensor = aten::matmul(%x, %w)
      %bias: Tensor = aten::mul(%b, %beta)
      %out: Tensor = aten::add(%bias, %mm, %alpha)
      return (%out))IR";

  // 创建子图重写器并注册匹配模式和替换模式
  torch::jit::SubgraphRewriter unpack_addmm;
  unpack_addmm.RegisterRewritePattern(addmm_pattern, mm_add_pattern);
  // 遍历graph,完成重写
  unpack_addmm.runOnGraph(graph);
  LOG_GRAPH("Post unpack addmm: " << *graph);
}

3. 简单例子

复制代码
import torch
def origin_func(x):
    x = x**2
    x = x**3
    return x

x = torch.rand(1, 2, 3, 4)
jit_model = torch.jit.trace(origin_func, x)
print(jit_model.graph)

# 匹配用的子图定义,注意常量必须为[value=2]属性
pattern = """
    graph(%x):
        %const_2 = prim::Constant[value=2]()
        %out = aten::pow(%x, %const_2)
        return (%out)
"""
# 替换用的子图定义
replacement = """
    graph(%x):
        %out = aten::mul(%x, %x)
        return (%out)
"""
torch._C._jit_pass_custom_pattern_based_rewrite_graph(pattern, replacement,jit_model.graph)
print(jit_model.graph)
相关推荐
用户47949283569154 分钟前
每天都在用大模型,但是你知道temperature、top_p、top_k这些常见参数是做什么的吗?
人工智能·面试·llm
z千鑫5 分钟前
【OpenAI】性价比极高的轻量级多模态模型GPT-4.1-mini介绍 + API KEY的使用教程!
人工智能·gpt·ai·语言模型·chatgpt
机器之心8 分钟前
苹果发布会:耳机测心率、手表听音乐、iPhone Air超级薄
人工智能·openai
CoovallyAIHub10 分钟前
基于YOLO集成模型的无人机多光谱风电部件缺陷检测
深度学习·算法·计算机视觉
CoovallyAIHub11 分钟前
几十个像素的小目标,为何难倒无人机?LCW-YOLO让无人机小目标检测不再卡顿
深度学习·算法·计算机视觉
中科岩创13 分钟前
某排水涵洞结构安全自动化监测
人工智能·物联网·自动化
mit6.82441 分钟前
[网络入侵AI检测] 模型性能评估与报告
人工智能
黄焖鸡能干四碗1 小时前
智慧教育,智慧校园,智慧安防学校建设解决方案(PPT+WORD)
java·大数据·开发语言·数据库·人工智能
IMER SIMPLE1 小时前
人工智能-python-深度学习-经典网络模型-LeNets5
人工智能·python·深度学习
却道天凉_好个秋1 小时前
深度学习(五):过拟合、欠拟合与代价函数
人工智能·深度学习·过拟合·欠拟合·代价函数