深度学习系列72:torch-tensorrt入门

1. 安装

坑非常多,清华源阿里源都不行。使用官网源下载,这里的121可以改成你需要的东西:

python -m pip install torch torch-tensorrt tensorrt --extra-index-url https://download.pytorch.org/whl/cu121

2. 原理

我们来看一个实例:这是一个用于支持 torchscript 到 TensorRT 转换的项目。上面的代码用于将 addmm 运算展开成数个算子,方便后续映射 TensorRT 算子。

复制代码
void UnpackAddMM(std::shared_ptr<torch::jit::Graph>& graph) {
  // TensorRT implicitly adds a flatten layer in front of FC layers if necessary
  // 用于匹配的模式
  std::string addmm_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %out: Tensor = aten::addmm(%b, %x, %w, %beta, %alpha)
      return (%out))IR";
  // 用于替换的模式
  std::string mm_add_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %mm: Tensor = aten::matmul(%x, %w)
      %bias: Tensor = aten::mul(%b, %beta)
      %out: Tensor = aten::add(%bias, %mm, %alpha)
      return (%out))IR";

  // 创建子图重写器并注册匹配模式和替换模式
  torch::jit::SubgraphRewriter unpack_addmm;
  unpack_addmm.RegisterRewritePattern(addmm_pattern, mm_add_pattern);
  // 遍历graph,完成重写
  unpack_addmm.runOnGraph(graph);
  LOG_GRAPH("Post unpack addmm: " << *graph);
}

3. 简单例子

复制代码
import torch
def origin_func(x):
    x = x**2
    x = x**3
    return x

x = torch.rand(1, 2, 3, 4)
jit_model = torch.jit.trace(origin_func, x)
print(jit_model.graph)

# 匹配用的子图定义,注意常量必须为[value=2]属性
pattern = """
    graph(%x):
        %const_2 = prim::Constant[value=2]()
        %out = aten::pow(%x, %const_2)
        return (%out)
"""
# 替换用的子图定义
replacement = """
    graph(%x):
        %out = aten::mul(%x, %x)
        return (%out)
"""
torch._C._jit_pass_custom_pattern_based_rewrite_graph(pattern, replacement,jit_model.graph)
print(jit_model.graph)
相关推荐
QBoson40 分钟前
量子计算+AI:特征选择与神经网络优化创新应用
人工智能·神经网络·量子计算·图像分类·特征选择·“五岳杯”量子计算挑战赛·相干光量子计算机
Juicedata2 小时前
JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
运维·人工智能·ai
Work(沉淀版)4 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空5 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问5 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven5 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5166 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊6 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin8 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮8 小时前
知识图谱技术概述
大数据·人工智能·知识图谱