深度学习系列72:torch-tensorrt入门

1. 安装

坑非常多,清华源阿里源都不行。使用官网源下载,这里的121可以改成你需要的东西:

python -m pip install torch torch-tensorrt tensorrt --extra-index-url https://download.pytorch.org/whl/cu121

2. 原理

我们来看一个实例:这是一个用于支持 torchscript 到 TensorRT 转换的项目。上面的代码用于将 addmm 运算展开成数个算子,方便后续映射 TensorRT 算子。

void UnpackAddMM(std::shared_ptr<torch::jit::Graph>& graph) {
  // TensorRT implicitly adds a flatten layer in front of FC layers if necessary
  // 用于匹配的模式
  std::string addmm_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %out: Tensor = aten::addmm(%b, %x, %w, %beta, %alpha)
      return (%out))IR";
  // 用于替换的模式
  std::string mm_add_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %mm: Tensor = aten::matmul(%x, %w)
      %bias: Tensor = aten::mul(%b, %beta)
      %out: Tensor = aten::add(%bias, %mm, %alpha)
      return (%out))IR";

  // 创建子图重写器并注册匹配模式和替换模式
  torch::jit::SubgraphRewriter unpack_addmm;
  unpack_addmm.RegisterRewritePattern(addmm_pattern, mm_add_pattern);
  // 遍历graph,完成重写
  unpack_addmm.runOnGraph(graph);
  LOG_GRAPH("Post unpack addmm: " << *graph);
}

3. 简单例子

import torch
def origin_func(x):
    x = x**2
    x = x**3
    return x

x = torch.rand(1, 2, 3, 4)
jit_model = torch.jit.trace(origin_func, x)
print(jit_model.graph)

# 匹配用的子图定义,注意常量必须为[value=2]属性
pattern = """
    graph(%x):
        %const_2 = prim::Constant[value=2]()
        %out = aten::pow(%x, %const_2)
        return (%out)
"""
# 替换用的子图定义
replacement = """
    graph(%x):
        %out = aten::mul(%x, %x)
        return (%out)
"""
torch._C._jit_pass_custom_pattern_based_rewrite_graph(pattern, replacement,jit_model.graph)
print(jit_model.graph)
相关推荐
玩电脑的辣条哥32 分钟前
动态记忆网络 DeepMind的MEMO架构允许在推理时动态读写记忆矩阵,记忆容量提升40倍
人工智能
番茄老夫子1 小时前
宠物智能可穿戴产品调研报告
大数据·人工智能·宠物
lx7416026982 小时前
文章精读篇——用于遥感小样本语义分割的可学习Prompt
人工智能·学习·prompt
程序猿阿伟2 小时前
《解锁AI密码,机器人精准感知环境不再是梦!》
人工智能·机器人
cnbestec2 小时前
DEX-EE三指灵巧手:扩展AI与机器人研究的边界
人工智能·科技·机器人·欣佰特
AITIME论道2 小时前
即插即用Transformer、扩散模型、机器人规划、长文本检索增强生成 | Big Model Weekly 第57期...
人工智能·深度学习·transformer
云帆@2 小时前
deepseek-glm4-grpo训练
人工智能
mailangduoduo3 小时前
pytorch入门级项目--基于卷积神经网络的数字识别
人工智能·pytorch·cnn
量子-Alex3 小时前
【目标检测】【BiFPN】EfficientDet:Scalable and Efficient Object Detection
人工智能·目标检测·计算机视觉
Fansv5873 小时前
深度学习-7.超参数优化
人工智能·深度学习