深度学习系列72:torch-tensorrt入门

1. 安装

坑非常多,清华源阿里源都不行。使用官网源下载,这里的121可以改成你需要的东西:

python -m pip install torch torch-tensorrt tensorrt --extra-index-url https://download.pytorch.org/whl/cu121

2. 原理

我们来看一个实例:这是一个用于支持 torchscript 到 TensorRT 转换的项目。上面的代码用于将 addmm 运算展开成数个算子,方便后续映射 TensorRT 算子。

复制代码
void UnpackAddMM(std::shared_ptr<torch::jit::Graph>& graph) {
  // TensorRT implicitly adds a flatten layer in front of FC layers if necessary
  // 用于匹配的模式
  std::string addmm_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %out: Tensor = aten::addmm(%b, %x, %w, %beta, %alpha)
      return (%out))IR";
  // 用于替换的模式
  std::string mm_add_pattern = R"IR(
    graph(%b, %x, %w, %beta, %alpha):
      %mm: Tensor = aten::matmul(%x, %w)
      %bias: Tensor = aten::mul(%b, %beta)
      %out: Tensor = aten::add(%bias, %mm, %alpha)
      return (%out))IR";

  // 创建子图重写器并注册匹配模式和替换模式
  torch::jit::SubgraphRewriter unpack_addmm;
  unpack_addmm.RegisterRewritePattern(addmm_pattern, mm_add_pattern);
  // 遍历graph,完成重写
  unpack_addmm.runOnGraph(graph);
  LOG_GRAPH("Post unpack addmm: " << *graph);
}

3. 简单例子

复制代码
import torch
def origin_func(x):
    x = x**2
    x = x**3
    return x

x = torch.rand(1, 2, 3, 4)
jit_model = torch.jit.trace(origin_func, x)
print(jit_model.graph)

# 匹配用的子图定义,注意常量必须为[value=2]属性
pattern = """
    graph(%x):
        %const_2 = prim::Constant[value=2]()
        %out = aten::pow(%x, %const_2)
        return (%out)
"""
# 替换用的子图定义
replacement = """
    graph(%x):
        %out = aten::mul(%x, %x)
        return (%out)
"""
torch._C._jit_pass_custom_pattern_based_rewrite_graph(pattern, replacement,jit_model.graph)
print(jit_model.graph)
相关推荐
杜子不疼.11 分钟前
光影交织:基于Rokid AI眼镜的沉浸式影视剧情互动体验开发实战
人工智能
IT_陈寒14 分钟前
Python高手都在用的5个隐藏技巧,让你的代码效率提升50%
前端·人工智能·后端
love530love20 分钟前
【保姆级教程】Windows + Podman 从零部署 Duix-Avatar 数字人项目
人工智能·windows·笔记·python·数字人·podman·duix-avatar
周杰伦_Jay35 分钟前
【 2025年必藏】8个开箱即用的优质开源智能体(Agent)项目
人工智能·机器学习·架构·开源
大模型真好玩38 分钟前
低代码Agent开发框架使用指南(八)—Coze 知识库详解
人工智能·agent·coze
2***57422 小时前
人工智能在智能投顾中的算法
人工智能·算法
草莓熊Lotso3 小时前
Git 分支管理:从基础操作到协作流程(本地篇)
大数据·服务器·开发语言·c++·人工智能·git·sql
youngfengying3 小时前
Swin Transformer
人工智能·深度学习·transformer
User_芊芊君子3 小时前
光影协同:基于Rokid CXR-M SDK构建工业级远程专家协作维修系统
人工智能
摘星编程3 小时前
AI文物复活馆:基于 AiOnly 一键调用 Claude 4.5 + Gemini 3 Pro 的多模态复原神器
人工智能·aionly