Bug | CUDA | cuDNN error: CUDNN_STATUS_INTERNAL_ERROR

问题描述

今天在调试 Mamba 模型,然后我发现一个很奇怪的现象:如果我指定了 "CUDA:5" 进行调试,程序就会出现如下的报错;但如果我用 "CUDA:0" 运行程序,就能够正常运行,不发生程序报错。

我从张量的维度,张量的数据类型等方面都详细检查过了,同时确保了张量和模型也确实同时在 "CUDA:5" 显卡上,这让我和GPT都一脸懵逼。


错误代码

我用如下的代码指定当前环境的可见显卡,这样一来,你猜猜我的 inputs 会出现哪张显卡上?

出现在:CUDA0!而非CUDA5!

python 复制代码
import torch
import models
import os
os.environ["CUDA_VISIBLE_DEVICES"] ="5"
inputs = torch.randn(2, 1024, 3).cuda()

正确代码

正确方法!必须在导入torch前,就设置 CUDA_VISIBLE_DEVICES,代码如下,否则无效!

确保 **os.environ["CUDA_VISIBLE_DEVICES"] = "5"**这一行代码是在导入 PyTorch 或执行任何 CUDA 操作之前设置的。如果已经有其他 CUDA 操作或模块初始化在 CUDA_VISIBLE_DEVICES 之前执行,那么这个环境变量的更改不会生效

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] ="5,6"

import torch
import models

错因总结

因为我使用了错误代码,因此运行环境仍然对所有显卡都可见,导致某些中间运行结果暂存在 "CUDA:0" 上,这与我的模型 "CUDA:5" 的设备不一致,导致发生错误。

切记!检查环境变量是否生效!

相关推荐
whitelbwwww5 分钟前
Python图像处理入门指南--opencv
人工智能·opencv·计算机视觉
Peter114671785013 分钟前
华中科技大学研究生课程《数字图像处理I》期末考试(2025-回忆版/电子信息与通信学院)
图像处理·人工智能·计算机视觉
测试199820 分钟前
接口自动化测试套件封装示例详解
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·接口测试
颜颜yan_23 分钟前
在openEuler上搞个云原生AI模型商店:像点外卖一样部署模型
人工智能·云原生
lomocode34 分钟前
Dify 自建部署完全指南:从上手到放弃到真香
人工智能
aaaa_a1331 小时前
李宏毅——self-attention Transformer
人工智能·深度学习·transformer
工会代表2 小时前
使用 GitHub Actions 与 Docker 实现 CaptchaVision API 持续集成
python
Coovally AI模型快速验证2 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang2 小时前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian2 小时前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python