Bug | CUDA | cuDNN error: CUDNN_STATUS_INTERNAL_ERROR

问题描述

今天在调试 Mamba 模型,然后我发现一个很奇怪的现象:如果我指定了 "CUDA:5" 进行调试,程序就会出现如下的报错;但如果我用 "CUDA:0" 运行程序,就能够正常运行,不发生程序报错。

我从张量的维度,张量的数据类型等方面都详细检查过了,同时确保了张量和模型也确实同时在 "CUDA:5" 显卡上,这让我和GPT都一脸懵逼。


错误代码

我用如下的代码指定当前环境的可见显卡,这样一来,你猜猜我的 inputs 会出现哪张显卡上?

出现在:CUDA0!而非CUDA5!

python 复制代码
import torch
import models
import os
os.environ["CUDA_VISIBLE_DEVICES"] ="5"
inputs = torch.randn(2, 1024, 3).cuda()

正确代码

正确方法!必须在导入torch前,就设置 CUDA_VISIBLE_DEVICES,代码如下,否则无效!

确保 **os.environ["CUDA_VISIBLE_DEVICES"] = "5"**这一行代码是在导入 PyTorch 或执行任何 CUDA 操作之前设置的。如果已经有其他 CUDA 操作或模块初始化在 CUDA_VISIBLE_DEVICES 之前执行,那么这个环境变量的更改不会生效

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] ="5,6"

import torch
import models

错因总结

因为我使用了错误代码,因此运行环境仍然对所有显卡都可见,导致某些中间运行结果暂存在 "CUDA:0" 上,这与我的模型 "CUDA:5" 的设备不一致,导致发生错误。

切记!检查环境变量是否生效!

相关推荐
寒月霜华11 分钟前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu1 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师2 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
酷飞飞3 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
cxr8283 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡4 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
数字化顾问4 小时前
Python:OpenCV 教程——从传统视觉到深度学习:YOLOv8 与 OpenCV DNN 模块协同实现工业缺陷检测
python
幂简集成4 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃4 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)4 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑