Bug | CUDA | cuDNN error: CUDNN_STATUS_INTERNAL_ERROR

问题描述

今天在调试 Mamba 模型,然后我发现一个很奇怪的现象:如果我指定了 "CUDA:5" 进行调试,程序就会出现如下的报错;但如果我用 "CUDA:0" 运行程序,就能够正常运行,不发生程序报错。

我从张量的维度,张量的数据类型等方面都详细检查过了,同时确保了张量和模型也确实同时在 "CUDA:5" 显卡上,这让我和GPT都一脸懵逼。


错误代码

我用如下的代码指定当前环境的可见显卡,这样一来,你猜猜我的 inputs 会出现哪张显卡上?

出现在:CUDA0!而非CUDA5!

python 复制代码
import torch
import models
import os
os.environ["CUDA_VISIBLE_DEVICES"] ="5"
inputs = torch.randn(2, 1024, 3).cuda()

正确代码

正确方法!必须在导入torch前,就设置 CUDA_VISIBLE_DEVICES,代码如下,否则无效!

确保 **os.environ["CUDA_VISIBLE_DEVICES"] = "5"**这一行代码是在导入 PyTorch 或执行任何 CUDA 操作之前设置的。如果已经有其他 CUDA 操作或模块初始化在 CUDA_VISIBLE_DEVICES 之前执行,那么这个环境变量的更改不会生效

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] ="5,6"

import torch
import models

错因总结

因为我使用了错误代码,因此运行环境仍然对所有显卡都可见,导致某些中间运行结果暂存在 "CUDA:0" 上,这与我的模型 "CUDA:5" 的设备不一致,导致发生错误。

切记!检查环境变量是否生效!

相关推荐
乔江seven2 分钟前
【Flask 进阶】3 从同步到异步:基于 Redis 任务队列解决 API 高并发与长耗时任务阻塞
redis·python·flask
JicasdC123asd5 分钟前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习
pchaoda14 分钟前
基本面因子计算入门
python·matplotlib·量化
Wpa.wk19 分钟前
接口自动化测试 - 请求构造和响应断言 -Rest-assure
开发语言·python·测试工具·接口自动化
星爷AG I20 分钟前
9-28 视觉工作记忆(AGI基础理论)
人工智能·计算机视觉·agi
陈天伟教授27 分钟前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型
岱宗夫up30 分钟前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
程序猿阿伟31 分钟前
《游戏AI训练模拟环境:高保真可加速构建实战指南》
人工智能·游戏
狂奔蜗牛飙车31 分钟前
Python学习之路-循环语句学习详解
python·学习·python学习·#python学习笔记·循环语句详解
花月mmc33 分钟前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理