数据结构-二叉树的遍历和线索二叉树

一、了解二叉树遍历

1. 先序遍历

定义:先序遍历是指在访问一个节点时,先访问该节点本身,然后再访问其左子树和右子树。

顺序

  1. 访问根节点
  2. 先序遍历左子树
  3. 先序遍历右子树

示例

假设有如下二叉树:

复制代码
      A
     / \
    B   C
   / \
  D   E

先序遍历的结果为:A, B, D, E, C

应用:先序遍历通常用于复制树结构或生成树的前缀表达式。

2. 中序遍历

定义:中序遍历是指在访问一个节点时,先访问其左子树,然后访问该节点本身,最后访问其右子树。

顺序

  1. 中序遍历左子树
  2. 访问根节点
  3. 中序遍历右子树

示例

对于同样的二叉树:

复制代码
      A
     / \
    B   C
   / \
  D   E

中序遍历的结果为:D, B, E, A, C

应用:中序遍历常用于生成树的中缀表达式,特别是在二叉搜索树中,中序遍历会得到一个有序的节点值列表。

3. 后序遍历

定义:后序遍历是指在访问一个节点时,先访问其左子树和右子树,最后访问该节点本身。

顺序

  1. 后序遍历左子树
  2. 后序遍历右子树
  3. 访问根节点

示例

对于同样的二叉树:

复制代码
      A
     / \
    B   C
   / \
  D   E

后序遍历的结果为:D, E, B, C, A

应用:后序遍历通常用于删除树的节点或计算树的大小,也常用于生成树的后缀表达式。

总结:

  • 先序遍历:根 -> 左 -> 右
  • 中序遍历:左 -> 根 -> 右
  • 后序遍历:左 -> 右 -> 根

二、二叉树遍历程序(C语言-先/中/后序遍历)

1. 链式存储结构

复制代码
// 定义二叉树节点结构体
typedef struct TreeNode {
    int data;               // 节点存储的数据
    struct TreeNode* Left;  // 指向左子节点的指针
    struct TreeNode* Right; // 指向右子节点的指针
} TreeNode, * BiTree; // 定义BiTree为TreeNode的指针类型

2. 打印节点数据

复制代码
// 打印节点数据的函数
void printf_BiTree(int data) {
    printf("%d ", data); // 打印数据并添加空格以便于输出格式
}

3. 先序遍历

复制代码
// 先序遍历函数
void PreOrder(BiTree T) {
    if (T != NULL) { // 如果节点不为空
        printf_BiTree(T->data); // 打印当前节点数据
        PreOrder(T->Left);       // 递归遍历左子树
        PreOrder(T->Right);      // 递归遍历右子树
    }
}

4. 中序遍历

复制代码
// 中序遍历函数
void InOrder(BiTree T) { // 修正函数名
    if (T != NULL) { // 如果节点不为空
        InOrder(T->Left);       // 递归遍历左子树
        printf_BiTree(T->data); // 打印当前节点数据
        InOrder(T->Right);      // 递归遍历右子树
    }
}

5. 后续遍历

复制代码
// 后序遍历函数
void PostOrder(BiTree T) { // 修正函数名
    if (T != NULL) { // 如果节点不为空
        PostOrder(T->Left);       // 递归遍历左子树
        PostOrder(T->Right);      // 递归遍历右子树
        printf_BiTree(T->data);   // 打印当前节点数据
    }
}

6. 演示案例

复制代码
// 主函数
int main() {
    // 创建树节点
    TreeNode n1 = { 1, NULL, NULL }; // 创建叶子节点1
    TreeNode n2 = { 2, NULL, NULL }; // 创建叶子节点2
    TreeNode n3 = { 3, &n1, &n2 };   // 创建根节点3,左子树为n1,右子树为n2

    // 打印先序遍历结果
    printf("PreOrder: ");
    PreOrder(&n3); // 调用先序遍历函数
    printf("\n");   // 换行

    // 打印中序遍历结果
    printf("InOrder: ");
    InOrder(&n3); // 调用中序遍历函数
    printf("\n");  // 换行

    // 打印后序遍历结果
    printf("PostOrder: ");
    PostOrder(&n3); // 调用后序遍历函数
    printf("\n");    // 换行

    return 0; // 程序结束
}

三、总代码

复制代码
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>


// 定义二叉树节点结构体
typedef struct TreeNode {
    int data;               // 节点存储的数据
    struct TreeNode* Left;  // 指向左子节点的指针
    struct TreeNode* Right; // 指向右子节点的指针
} TreeNode, * BiTree; // 定义BiTree为TreeNode的指针类型

// 打印节点数据的函数
void printf_BiTree(int data) {
    printf("%d ", data); // 打印数据并添加空格以便于输出格式
}

// 先序遍历函数
void PreOrder(BiTree T) {
    if (T != NULL) { // 如果节点不为空
        printf_BiTree(T->data); // 打印当前节点数据
        PreOrder(T->Left);       // 递归遍历左子树
        PreOrder(T->Right);      // 递归遍历右子树
    }
}

// 中序遍历函数
void InOrder(BiTree T) { // 修正函数名
    if (T != NULL) { // 如果节点不为空
        InOrder(T->Left);       // 递归遍历左子树
        printf_BiTree(T->data); // 打印当前节点数据
        InOrder(T->Right);      // 递归遍历右子树
    }
}

// 后序遍历函数
void PostOrder(BiTree T) { // 修正函数名
    if (T != NULL) { // 如果节点不为空
        PostOrder(T->Left);       // 递归遍历左子树
        PostOrder(T->Right);      // 递归遍历右子树
        printf_BiTree(T->data);   // 打印当前节点数据
    }
}


// 主函数
int main() {
    // 创建树节点
    TreeNode n1 = { 1, NULL, NULL }; // 创建叶子节点1
    TreeNode n2 = { 2, NULL, NULL }; // 创建叶子节点2
    TreeNode n3 = { 3, &n1, &n2 };   // 创建根节点3,左子树为n1,右子树为n2

    // 打印先序遍历结果
    printf("PreOrder: ");
    PreOrder(&n3); // 调用先序遍历函数
    printf("\n");   // 换行

    // 打印中序遍历结果
    printf("InOrder: ");
    InOrder(&n3); // 调用中序遍历函数
    printf("\n");  // 换行

    // 打印后序遍历结果
    printf("PostOrder: ");
    PostOrder(&n3); // 调用后序遍历函数
    printf("\n");    // 换行
     


    return 0; // 程序结束
}
相关推荐
小许学java3 小时前
数据结构-ArrayList与顺序表
java·数据结构·顺序表·arraylist·线性表
格林威5 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
程序员莫小特7 小时前
老题新解|大整数加法
数据结构·c++·算法
小刘max8 小时前
深入理解队列(Queue):从原理到实践的完整指南
数据结构
过往入尘土8 小时前
服务端与客户端的简单链接
人工智能·python·算法·pycharm·大模型
zycoder.8 小时前
力扣面试经典150题day1第一题(lc88),第二题(lc27)
算法·leetcode·面试
蒙奇D索大8 小时前
【数据结构】考研数据结构核心考点:二叉排序树(BST)全方位详解与代码实现
数据结构·笔记·学习·考研·算法·改行学it
洲覆8 小时前
C++ 模板、泛型与 auto 关键字
开发语言·数据结构·c++
MoRanzhi12039 小时前
15. Pandas 综合实战案例(零售数据分析)
数据结构·python·数据挖掘·数据分析·pandas·matplotlib·零售
智驱力人工智能9 小时前
工厂抽烟检测系统 智能化安全管控新方案 加油站吸烟检测技术 吸烟行为智能监测
人工智能·算法·安全·边缘计算·抽烟检测算法·工厂抽烟检测系统·吸烟监测