大数据5v特性、集群、分布式

目录

数据分析六部曲

[大数据的特点 (5v特征)](#大数据的特点 (5v特征))

分布式与集群的区别

常用的分布式方案


数据分析六部曲

  1. 明确分析目的和思路:确保分析框架的体系化和逻辑性,简单来说就是先分析什么,后分析什么,使得各个分析点之间具有逻辑联系。

  2. 数据收集:一般数据来源有数据库、公开出版物、互联网、市场调查等。

  3. 数据处理:主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。是数据分析的基础

  4. 数据分析:用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。其中数据挖掘是一种高级的数据分析方法。

  5. 数据展示:通过表格和图形的方式展示。

  6. 报告撰写:对整个数据分析过程的一个总结与呈现。要有一定的建议或解决方案。

大数据的特点 (5v特征)

  • Volume:数据量大,包括采集、存储和计算的量都非常大;

  • Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据;

  • Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵;

  • Velocity:数据增长速度快,处理速度也快,时效性要求高;

  • Veracity:数据的准确性和可信赖度,即数据的质量。

分布式与集群的区别

  • 分布式:多台服务器干不同的模块任务,组成一个统一的整体功能;

  • 集群:一台服务器处理请求个数有限,提供服务能力有限,准备多台服务器干同样的的任务。

  • 集群和分布式,都是描述的一组计算机。集群的所有节点跑的是同样的任务,集群本质是多台服务器联合起来独立做相同的任务(多个服务器分担客户端发来的请求) 。而分布式系统的节点跑的是分解后的任务,分布式本质是多台服务器协同配合完成同一个大任务(每个服务器都只完成大任务拆分出来的单独1个子任务)

  • 以修手机为例:维修手机要分为检测、维修、测试三个环节,当多部手机都需要维修的时候,为了提高效率,雇了10位工程师。如果每个工程师维修时,对每台手机进行检测、维修和测试,这就是集群的工作方式。如果2位工程师负责检测,5位工程师负责维修,剩下的3位工程师负责测试,这就是分布式的工作方

常用的分布式方案

  • 分布式应用和服务 :将应用和服务进行分层和分割,然后将应用和服务模块进行分布式部署。这样做不仅可以提高并发访问能力、减少数据库连接和资源消耗,还能使不同应用复用共同的服务,使业务易于扩展。比如:分布式服务框架 Dubbo。

  • 分布式数据存储 :常常需要处理海量数据,单台计算机往往无法提供足够的内存空间,可以对这些数据进行分布式存储。比如Apache Hadoop HDFS

  • 分布式计算 :分布式计算将该应用分解成许多小的部分,分配给多台计算机进行处理。这样可以节约整体计算时间,大大提高计算效率。比如 Apache Hadoop MapReduce。
相关推荐
疯狂小羊啊1 小时前
WPS数据分析000008
数据分析·wps
秉寒-CHO4 小时前
认知计算与 AI 大模型:数据仓库、数据湖与数据分析的变革力量
数据仓库·人工智能·数据分析
zoney hu11 小时前
Python数据分析-Python语法基础,IPython和Jupyter-Notebooks(二)
python·数据分析
抱抱宝13 小时前
Pyecharts之图表组合与布局优化
信息可视化·数据挖掘·数据分析
抱抱宝14 小时前
Pyecharts之地图图表的强大功能
python·信息可视化·数据分析
SelectDB技术团队14 小时前
Apache Doris 2.1.8 版本正式发布
大数据·数据库·数据仓库·数据分析·doris
抱抱宝14 小时前
Pyecharts之散点图的视觉扩展
python·信息可视化·数据分析
FIT2CLOUD飞致云15 小时前
案例研究丨浪潮云洲通过DataEase推进多维度数据可视化建设
数据分析·开源·数据可视化·dataease·数据大屏
狮歌~资深攻城狮15 小时前
什么时候用MPP,什么时候用TiDB?
数据库·数据仓库·分布式·数据分析·tidb
九亿AI算法优化工作室&19 小时前
DBO优化GRNN回归预测matlab
人工智能·python·算法·matlab·数据挖掘·回归·机器人