PyTorch自动混合精度训练

torch.cuda.amp.GradScaler 是 PyTorch 中的一个用于自动混合精度(Automatic Mixed Precision, AMP)训练的工具。AMP 允许在训练深度学习模型时动态切换浮点数的精度(例如,使用半精度浮点数 float16 而非 float32),以减少显存占用和加速计算,同时保持模型的精度。

1. GradScaler 的作用

在混合精度训练中,模型的某些部分以半精度(float16)计算,而其他部分仍然以全精度(float32)计算。使用 float16 进行计算可以显著提高计算速度和减少显存占用,但也可能导致数值不稳定或梯度下溢(gradient underflow)。GradScaler 通过动态缩放损失值来缓解这些问题,并在反向传播过程中对缩放后的梯度进行适当调整,确保训练过程稳定。

2. 混合精度训练的基本步骤

2. 1. 初始化 GradScaler
复制代码
scaler = torch.cuda.amp.GradScaler()
2. 2. 在前向传播中使用 autocast 上下文管理器

在模型的前向传播中,使用 torch.cuda.amp.autocast 上下文管理器将部分计算切换到半精度。

复制代码
with torch.cuda.amp.autocast():
    outputs = model(inputs)
    loss = criterion(outputs, targets)

在 PyTorch 中,autocast是一个用于自动混合精度训练的上下文管理器。

2. 3 使用 scaler.scale 缩放损失并反向传播

在计算损失并调用 backward() 前,通过 scaler.scale() 对损失进行缩放。

复制代码
scaler.scale(loss).backward()
2. 4 使用 scaler.step 进行优化器更新

使用 scaler.step() 来执行优化器的 step() 操作。

复制代码
scaler.step(optimizer)

2.5 调用 scaler.update : 通过 scaler.update() 来更新缩放因子,并根据需要调整精度。

复制代码
scaler.update()

3. 完整的示例代码

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.cuda.amp import GradScaler, autocast

# 假设你有一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 1)

    def forward(self, x):
        return self.fc(x)

# 初始化模型、损失函数和优化器
model = SimpleModel().cuda()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)

# 初始化 GradScaler
scaler = GradScaler()

# 假设你有输入和目标
inputs = torch.randn(64, 10).cuda()
targets = torch.randn(64, 1).cuda()

# 训练循环中的一次前向和反向传播
for epoch in range(10):
    optimizer.zero_grad()

    # 前向传播,使用 autocast 进行混合精度计算
    with autocast():
        outputs = model(inputs)
        loss = criterion(outputs, targets)

    # 反向传播,使用 scaler 进行梯度缩放
    scaler.scale(loss).backward()

    # 使用 scaler 进行优化器步进
    scaler.step(optimizer)

    # 更新缩放因子
    scaler.update()

    print(f"Epoch [{epoch+1}/10], Loss: {loss.item()}")

4. 总结

  • torch.cuda.amp.GradScaler 是用于混合精度训练的工具,通过动态缩放损失值来提高数值稳定性。
  • 使用 autocast 上下文管理器来自动处理前向传播中的精度切换。
  • 在反向传播和优化器更新时,通过 scaler 来处理损失缩放和梯度计算。

混合精度训练能够在现代 GPU 上显著提升训练速度和效率,同时通过 GradScaler 保持模型的稳定性和精度。

相关推荐
七芒星202319 分钟前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
Learn Beyond Limits1 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
摩羯座-185690305941 小时前
爬坑 10 年!京东店铺全量商品接口实战开发:从分页优化、SKU 关联到数据完整性闭环
linux·网络·数据库·windows·爬虫·python
ACERT3331 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
韩立学长1 小时前
【开题答辩实录分享】以《基于python的奶茶店分布数据分析与可视化》为例进行答辩实录分享
开发语言·python·数据分析
C嘎嘎嵌入式开发1 小时前
(一) 机器学习之深度神经网络
人工智能·神经网络·dnn
Aaplloo2 小时前
【无标题】
人工智能·算法·机器学习
大模型任我行2 小时前
复旦:LLM隐式推理SIM-CoT
人工智能·语言模型·自然语言处理·论文笔记
tomlone2 小时前
AI大模型核心概念
人工智能
2401_831501732 小时前
Python学习之day03学习(文件和异常)
开发语言·python·学习