PyTorch自动混合精度训练

torch.cuda.amp.GradScaler 是 PyTorch 中的一个用于自动混合精度(Automatic Mixed Precision, AMP)训练的工具。AMP 允许在训练深度学习模型时动态切换浮点数的精度(例如,使用半精度浮点数 float16 而非 float32),以减少显存占用和加速计算,同时保持模型的精度。

1. GradScaler 的作用

在混合精度训练中,模型的某些部分以半精度(float16)计算,而其他部分仍然以全精度(float32)计算。使用 float16 进行计算可以显著提高计算速度和减少显存占用,但也可能导致数值不稳定或梯度下溢(gradient underflow)。GradScaler 通过动态缩放损失值来缓解这些问题,并在反向传播过程中对缩放后的梯度进行适当调整,确保训练过程稳定。

2. 混合精度训练的基本步骤

2. 1. 初始化 GradScaler
复制代码
scaler = torch.cuda.amp.GradScaler()
2. 2. 在前向传播中使用 autocast 上下文管理器

在模型的前向传播中,使用 torch.cuda.amp.autocast 上下文管理器将部分计算切换到半精度。

复制代码
with torch.cuda.amp.autocast():
    outputs = model(inputs)
    loss = criterion(outputs, targets)

在 PyTorch 中,autocast是一个用于自动混合精度训练的上下文管理器。

2. 3 使用 scaler.scale 缩放损失并反向传播

在计算损失并调用 backward() 前,通过 scaler.scale() 对损失进行缩放。

复制代码
scaler.scale(loss).backward()
2. 4 使用 scaler.step 进行优化器更新

使用 scaler.step() 来执行优化器的 step() 操作。

复制代码
scaler.step(optimizer)

2.5 调用 scaler.update : 通过 scaler.update() 来更新缩放因子,并根据需要调整精度。

复制代码
scaler.update()

3. 完整的示例代码

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.cuda.amp import GradScaler, autocast

# 假设你有一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 1)

    def forward(self, x):
        return self.fc(x)

# 初始化模型、损失函数和优化器
model = SimpleModel().cuda()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)

# 初始化 GradScaler
scaler = GradScaler()

# 假设你有输入和目标
inputs = torch.randn(64, 10).cuda()
targets = torch.randn(64, 1).cuda()

# 训练循环中的一次前向和反向传播
for epoch in range(10):
    optimizer.zero_grad()

    # 前向传播,使用 autocast 进行混合精度计算
    with autocast():
        outputs = model(inputs)
        loss = criterion(outputs, targets)

    # 反向传播,使用 scaler 进行梯度缩放
    scaler.scale(loss).backward()

    # 使用 scaler 进行优化器步进
    scaler.step(optimizer)

    # 更新缩放因子
    scaler.update()

    print(f"Epoch [{epoch+1}/10], Loss: {loss.item()}")

4. 总结

  • torch.cuda.amp.GradScaler 是用于混合精度训练的工具,通过动态缩放损失值来提高数值稳定性。
  • 使用 autocast 上下文管理器来自动处理前向传播中的精度切换。
  • 在反向传播和优化器更新时,通过 scaler 来处理损失缩放和梯度计算。

混合精度训练能够在现代 GPU 上显著提升训练速度和效率,同时通过 GradScaler 保持模型的稳定性和精度。

相关推荐
悦悦子a啊21 分钟前
Python之--基本知识
开发语言·前端·python
jndingxin2 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦2 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
笑稀了的野生俊2 小时前
在服务器中下载 HuggingFace 模型:终极指南
linux·服务器·python·bash·gpu算力
Naiva2 小时前
【小技巧】Python+PyCharm IDE 配置解释器出错,环境配置不完整或不兼容。(小智AI、MCP、聚合数据、实时新闻查询、NBA赛事查询)
ide·python·pycharm
hie988943 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03273 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
路来了3 小时前
Python小工具之PDF合并
开发语言·windows·python
蓝婷儿3 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手3 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链