线性代数 -- 矩阵求导

Tips:本文为理解神经网络的前置知识,整体内容并不全,相关内容还需后续进一步完善。

一、基础

1、标量、向量和矩阵

标量:只有大小,没有方向的量

向量(欧几里得向量):具有大小和方向的量。

矩阵:按照长方阵列排列的复数或实数集合

数学中的表示:

2、布局引入

2.1、标量对标量的导数

高等数学里面,我们已经学过了标量对标量求导,如下

有时候可能会有两个自变量,:

2.2、标量对向量的导数

我们将上面的两个标量写成向量形式,于是有(标量 y ,向量 x ):

将两个推广到多个,就有了标量对向量求导的形式:

那么问题来了,一个标量y对维度为m的向量x求导,那么结果也是一个m维的向量,那么这个结果向量是行向量,还是列向量呢?

可见标量对向量的求导,就是标量对向量中每个分量求导,最后把他们排列在一起,按一个向量表示,同理也可以得到向量对标量 的求导、向量对向量 的求导、标量对矩阵 的求导、矩阵对标量 的求导、向量对矩阵 的求导、矩阵对向量 的求导、矩阵对矩阵的求导。

如上,标量y对维度为m的一个向量x 的求导,那么结果也是一个m维的向量。这个m维的求导结果排列成的m维列向量或行向量均可。

但在我们机器学习算法法优化过程 中,如果行向量或者列向量随便写,那么结果就不唯一,为了解决这个问题,我们引入求导布局的概念。

3、分子布局(numerator layout)和分母布局(denominator layout)

3.1、标量对向量的求导

对于分子布局 ,我们求导结果的维度以分子 为主,比如上面标量对向量求导的例子,结果的维度和分子的维度是一致的。也就是说,如果向量x 是一个m维的行向量,那么求导结果是一个m维列向量。如果向量x 是一个m维列向量,那么求导结果是一个m维行向量。

对于分母布局 来说,我们求导结果的维度以分母 为主,如果向量x 是一个m维的行向量,那么求导结果也是一个m维行向量。如果向量x 是一个m维的列向量,那么求导结果也是一个m维的列向量。

分子布局和分母布局的结果来说,两者互为转置

3.2、向量对标量的求导

同理可得:

3.4、向量对向量的求导

3.5、标量对矩阵的求导

标量y对矩阵X(m*n)求导:

  • 分子布局:求导结果维度为n*m
  • 分母布局:求导结果维度与分母的矩阵X维度一致,为m*n

3.6、矩阵对标量的求导

矩阵Y(m*n)对标量x求导:

  • 分子布局:求导结果维度与分子的矩阵Y维度一致,为m*n
  • 分母布局:求导结果为n*m

向量对矩阵 的求导、矩阵对向量 的求导、矩阵对矩阵的求导。

相关推荐
LCG元20 分钟前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术24 分钟前
Stack Overflow,轰然倒下!
前端·人工智能·后端
YuTaoShao1 小时前
【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
java·算法·leetcode·职场和发展
超龄超能程序猿1 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
要努力啊啊啊1 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
好开心啊没烦恼1 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
生态遥感监测笔记1 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
天天扭码2 小时前
从图片到语音:我是如何用两大模型API打造沉浸式英语学习工具的
前端·人工智能·github
Tony沈哲2 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
张彦峰ZYF2 小时前
从检索到生成:RAG 如何重构大模型的知识边界?
人工智能·ai·aigc