线性代数 -- 矩阵求导

Tips:本文为理解神经网络的前置知识,整体内容并不全,相关内容还需后续进一步完善。

一、基础

1、标量、向量和矩阵

标量:只有大小,没有方向的量

向量(欧几里得向量):具有大小和方向的量。

矩阵:按照长方阵列排列的复数或实数集合

数学中的表示:

2、布局引入

2.1、标量对标量的导数

高等数学里面,我们已经学过了标量对标量求导,如下

有时候可能会有两个自变量,:

2.2、标量对向量的导数

我们将上面的两个标量写成向量形式,于是有(标量 y ,向量 x ):

将两个推广到多个,就有了标量对向量求导的形式:

那么问题来了,一个标量y对维度为m的向量x求导,那么结果也是一个m维的向量,那么这个结果向量是行向量,还是列向量呢?

可见标量对向量的求导,就是标量对向量中每个分量求导,最后把他们排列在一起,按一个向量表示,同理也可以得到向量对标量 的求导、向量对向量 的求导、标量对矩阵 的求导、矩阵对标量 的求导、向量对矩阵 的求导、矩阵对向量 的求导、矩阵对矩阵的求导。

如上,标量y对维度为m的一个向量x 的求导,那么结果也是一个m维的向量。这个m维的求导结果排列成的m维列向量或行向量均可。

但在我们机器学习算法法优化过程 中,如果行向量或者列向量随便写,那么结果就不唯一,为了解决这个问题,我们引入求导布局的概念。

3、分子布局(numerator layout)和分母布局(denominator layout)

3.1、标量对向量的求导

对于分子布局 ,我们求导结果的维度以分子 为主,比如上面标量对向量求导的例子,结果的维度和分子的维度是一致的。也就是说,如果向量x 是一个m维的行向量,那么求导结果是一个m维列向量。如果向量x 是一个m维列向量,那么求导结果是一个m维行向量。

对于分母布局 来说,我们求导结果的维度以分母 为主,如果向量x 是一个m维的行向量,那么求导结果也是一个m维行向量。如果向量x 是一个m维的列向量,那么求导结果也是一个m维的列向量。

分子布局和分母布局的结果来说,两者互为转置

3.2、向量对标量的求导

同理可得:

3.4、向量对向量的求导

3.5、标量对矩阵的求导

标量y对矩阵X(m*n)求导:

  • 分子布局:求导结果维度为n*m
  • 分母布局:求导结果维度与分母的矩阵X维度一致,为m*n

3.6、矩阵对标量的求导

矩阵Y(m*n)对标量x求导:

  • 分子布局:求导结果维度与分子的矩阵Y维度一致,为m*n
  • 分母布局:求导结果为n*m

向量对矩阵 的求导、矩阵对向量 的求导、矩阵对矩阵的求导。

相关推荐
振鹏Dong42 分钟前
依托 <AI 原生应用架构白皮书>,看 AI 原生应用的发展与实践
人工智能
Miraitowa_cheems1 小时前
LeetCode算法日记 - Day 68: 猜数字大小II、矩阵中的最长递增路径
数据结构·算法·leetcode·职场和发展·贪心算法·矩阵·深度优先
智行众维2 小时前
自动驾驶的“虚拟驾校”如何炼成?
人工智能·自动驾驶·汽车·智能驾驶·智能网联汽车·智能驾驶仿真测试·智驾系统
空白到白2 小时前
NLP-注意力机制
人工智能·自然语言处理
灵感__idea3 小时前
Hello 算法:让前端人真正理解算法
前端·javascript·算法
学习2年半4 小时前
小米笔试题:一元一次方程求解
算法
大千AI助手4 小时前
指数分布:从理论到机器学习应用
人工智能·机器学习·参数估计·概率密度函数·mle·指数分布·累积分布函数
MATLAB代码顾问4 小时前
MATLAB绘制多种混沌系统
人工智能·算法·matlab
搬砖的小码农_Sky4 小时前
人形机器人:Tesla Optimus的AI集成细节
人工智能·ai·机器人
做运维的阿瑞4 小时前
2025 年度国产大模型「开源 vs. 闭源」深度评测与实战指南
人工智能·低代码·开源