机器学习(ML)算法分类

机器学习(ML)算法是一个广泛而多样的领域,涵盖了多种用于数据分析和模式识别的技术。以下是一些常见的机器学习算法分类及其具体算法:

一、监督学习算法

监督学习算法使用标记(即已知结果)的训练数据来训练模型,以便对新数据进行预测。

  1. 线性回归:用于建立连续变量之间的关系,通过拟合一条直线或超平面来预测新数据的输出值。
  2. 逻辑回归:虽然名称中包含"回归",但实际上是用于分类问题,特别是二分类问题。通过将线性回归模型的输出映射到一个概率值(使用逻辑函数如sigmoid函数)来实现分类。
  3. 支持向量机(SVM):用于分类和回归问题,通过在高维空间中构建一个超平面来最大化不同类别之间的间隔,从而实现分类。
  4. 决策树:通过树形结构表示输入特征之间的关系,并根据特征的值进行分类或回归预测。
  5. 随机森林:由多个决策树组成的集成学习算法,通过投票或取平均值来提高预测的准确性和稳定性。
  6. K近邻(KNN):基于实例的学习算法,通过测量新数据与已知数据之间的距离,将其归为离其最近的K个数据点所在的类别中。
  7. 神经网络:模仿人脑神经元网络结构,通过多个节点和层次化结构学习输入和输出之间的复杂映射关系。深度学习是神经网络的一个子集,具有多层隐藏层结构。

二、无监督学习算法

无监督学习算法不需要标记的训练数据,而是从数据中自动发现隐藏的模式或结构。

  1. K均值聚类:用于将数据集划分为K个不重叠的簇,通过迭代计算每个样本与聚类中心的距离来实现。
  2. 主成分分析(PCA):一种降维技术,通过线性变换将高维数据映射到低维空间中,同时尽可能保留原始数据的显著特征。

三、其他类型的学习算法

  1. 半监督学习:结合了监督学习和无监督学习的特点,使用大量的未标记数据和少量的标记数据来训练模型。
  2. 强化学习:让智能体(agent)在环境中通过试错学习最优策略,以最大化累积奖励。这种学习方法不需要明确的监督信号,而是通过环境反馈来指导学习。

总结

机器学习算法种类繁多,每种算法都有其独特的优势和适用场景。在选择算法时,需要根据具体问题的性质、数据的特征以及预期的结果来综合考虑。同时,随着机器学习技术的不断发展,新的算法和模型不断涌现,为解决复杂问题提供了更多的可能性。

相关推荐
人工智能培训1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
板面华仔1 小时前
机器学习入门(二)——逻辑回归 (Logistic Regression)
python·机器学习
一人の梅雨1 小时前
VVIC图片搜索接口进阶实战:服装批发场景下的精准识图与批量调度方案
开发语言·机器学习·php
矢志航天的阿洪2 小时前
IGRF-13 数学细节与公式说明
线性代数·机器学习·矩阵
小鸡吃米…3 小时前
机器学习 —— 数据缩放
人工智能·python·机器学习
JHC0000003 小时前
智能体造论子--简单封装大模型输出审核器
开发语言·python·机器学习
龙腾AI白云4 小时前
AI算法实战:逻辑回归在风控场景中的应用
深度学习·机器学习·知识图谱
九河云4 小时前
数字韧性时代,华为云CBR为业务连续性注入“免疫基因”
大数据·人工智能·安全·机器学习·华为云
Juicedata5 小时前
JuiceFS 企业版 5.3 特性详解:单文件系统支持超 5,000 亿文件,首次引入 RDMA
大数据·人工智能·机器学习·性能优化·开源
码农水水6 小时前
得物Java面试被问:消息队列的死信队列和重试机制
java·开发语言·jvm·数据结构·机器学习·面试·职场和发展