安装飞桨paddle2.6.1+cuda11.7+paddleRS-develop开发版

安装飞桨paddle2.6.1+cuda11.7+paddleRS-develop开发版

安装时间:2024-8-30

#(一)查看环境

conda info --env

conda env list

下载安装conda3

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M\&O=A

下载版本文件:Anaconda3-2024.06-1-Windows-x86_64.exe

下载安装到磁盘空闲空间要大的D:\ProgramData\Anaconda3

设置添加系统变量Path

D:\ProgramData\Anaconda3

D:\ProgramData\Anaconda3\Scripts

D:\ProgramData\Anaconda3\Library\bin

D:\ProgramData\Anaconda3\Library\mingw-w64\bin

安装完后:python版本3.12.4

conda --version

conda 24.7.1

#(二)创建paddleRS环境空间(python=3.9.13)

#创建rs环境空间(python=3.9.13),会自动生成到目录中C:\Users\Administrator.conda\envs\rs

conda create -n rs python=3.9.13

conda remove -n rs --all

conda activate rs

conda deactivate

#测试用--创建cwgis环境空间(python=3.9.13),会自动生成到目录中C:\Users\Administrator.conda\envs\cwgis

conda create -n cwgis python=3.9.13

conda remove -n cwgis --all

conda activate base

conda activate cwgis

conda deactivate

#也可自定义路径的cwgis环境空间

D:\ProgramData\anaconda3\envs

conda create --prefix=D:\ProgramData\anaconda3\envs\cwgis python=3.9.13

下载CUDA11.7.1安装

测试是否cuda安装成功

nvcc -V

命令行输入检查该计算机适配的CUDA版本:

nvidia-smi

下载CUDA的安装(开发者工具包)CUDA11.7.1并运行

https://developer.nvidia.com/cuda-toolkit-archive

cuda_11.7.1_516.94_windows.exe

安装后有目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7

系统path自动添加:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin

下载CUDNN的安装(8.9.4.25)

https://developer.nvidia.com/rdp/cudnn-download

https://developer.nvidia.com/rdp/cudnn-archive

必须注册账户登录后下载

cudnn-windows-x86_64-8.9.4.25_cuda11-archive.zip

将解压后得到的的bin ,include 和lib文件夹分别复制到cuda安装路径下与cuda的bin ,include 和lib文件夹合并

bin copy to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin

include copy to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include

lib copy to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\lib

采用中科大源

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/

#(三)安装飞桨paddlepaddle-gpu==2.6.1 cuda11.7

以管理员身份运行cmd.exe

conda env list

conda init cmd.exe

conda init powershell

conda activate rs

conda deactivate

conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge

conda list

#安装到目录中D:\ProgramData\anaconda3\pkgs

报错问题:无法加载文件 C:\Users\Administrator\Documents\WindowsPowerShell\profile.ps1

解决办法:

以管理员身份打开PowerShell 输入

Set-ExecutionPolicy -Scope CurrentUser

set-executionpolicy remotesigned

(四)下载安装PaddleRS-develop平台开发版源代码

下载PaddleRS-develop 源代码 解压后目录

G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop

特别注意:#由develop 改为1.0.0

修改PaddleRS-develop/paddlers/.version = '1.0.0'

修改PaddleRS-develop/paddlers/init .py/version = '1.0.0'

conda activate rs

cd G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop

#搜索conda仓库上可用版本号

python 复制代码
conda search numpy
1.21.0      1.21.6
1.22.0      1.22.4
1.23.0      1.23.5
1.24.0      1.24.4
1.25.0      1.25.2
1.26.0      1.26.4
2.0.0       2.0.2
2.1.0  

conda search xarray
2024.7.0
2024.6.0
2024.5.0
2024.3.0
2024.2.0
2024.1.0  2024.1.1
2023.12.0
2023.11.0

需要提前安装的依赖包列表:

python 复制代码
pip install scikit-learn==0.24.2       #安装成功OK
conda install gdal==3.4.0              #安装成功OK
conda install pillow==9.0.1            #安装成功OK
conda install numpy==1.22.0            #安装成功OK,测试安装没报问题ImportError: numpy.core.multiarray failed to import
conda install opencv==4.4.0            #安装成功OK   测试代码可用
conda install filterpy==1.4.5          #安装成功 OK
pip  install opencv-contrib-python==4.4.0.46     #安装成功OK 选择与opencv4.4.0版本一致
conda install numpy==1.22.0            #再安装一次
pip  install setuptools==68.0.0        #built lap时需要68.0.0版本才能编译通过,否则会报错如:74.0.0版本
pip  install scikit-image==0.21.0      #需要降级到0.21.0 否则下面numpy==1.22.4安装兼容性报错
pip  install numba==0.56.2
pip  install pandas==2.0.3 
conda  install gdal==3.1.3
pip  install  xarray==2023.12.0
pip  install  numpy==1.22.4

报错问题:ERROR: Failed to build installable wheels for some pyproject.toml based projects (lap)

解决办法:

python 复制代码
pip  install setuptools==68.0.0
更新pip
python -m pip install --upgrade pip setuptools wheel
或
python -m pip install --upgrade pip

下载安装git

#==================================

1.先安装git Git-2.38.0-64-bit.exe

2.再安装 TortoiseGit-2.13.0.1-64bit.msi 安装后配置git path

#安装PaddleRS-develop版本

python 复制代码
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

#===========================================================
conda install numba==0.56.2
conda install numpy==1.21.6     #中间需要执行此句,否则会报错:ImportError: numpy._core.multiarray failed to import    
或
pip  install  numba==0.56.2 
pip  install  pandas==2.0.3 
conda  install gdal==3.1.3
pip  install  xarray==2023.12.0
pip  install  numpy==1.22.4        #conda list中显示为 numpy 2.0.2  pypi  
#===========================================================

python setup.py install

(五) 测试安装情况代码一结果

python 复制代码
(rs) PS G:\app2024\MyProject深度学习AI项目\web> & C:/Users/Administrator/.conda/envs/rs/python.exe g:/app2024/MyProject深度学习AI项目/web/test.py
2.6.1
Running verify PaddlePaddle program ...
I0829 17:55:25.061661 23132 program_interpreter.cc:212] New Executor is Running.
W0829 17:55:25.062655 23132 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.6, Runtime API Version: 11.7 
I0829 17:55:26.218680 23132 interpreter_util.cc:624] Standalone Executor is Used.
PaddlePaddle works well on 1 GPU.
PaddlePaddle is installed successfully! Let's stconda --versionng with PaddlePaddle now.
python 复制代码
# 查看 paddle能够调用 gpu
import paddle
print(paddle.__version__);              #2.6.1
#paddle.fluid.is_compiled_with_cuda()   #2.4.2版本
paddle.is_compiled_with_cuda();         #2.6.1版本
paddle.utils.run_check()


'''
特别注意:
在vscode中使用创建的虚拟环境
选择python的解释器:在vscode中按住快捷键Ctrl+shift+P,输入Python然后执行如下图:
Python:Select Interpreter
select D:\ProgramData\Anaconda3\python.exe
'''

测试安装情况代码二及结果:

python 复制代码
(rs) PS G:\app2024\MyProject深度学习AI项目\web> & C:/Users/Administrator/.conda/envs/rs/python.exe g:/app2024/MyProject深度学习AI项目/web/MNIST_Good.py
10.4.0
2.6.1
视觉相关数据集: ['DatasetFolder', 'ImageFolder', 'MNIST', 'FashionMNIST', 'Flowers', 'Cifar10', 'Cifar100', 'VOC2012']
自然语言相关数据集: []
数据处理方法: ['BaseTransform', 'Compose', 'Resize', 'RandomResizedCrop', 'CenterCrop', 'RandomHorizontalFlip', 'RandomVerticalFlip', 'Transpose', 'Normalize', 'BrightnessTransform', 'SaturationTransform', 'ContrastTransform', 'HueTransform', 'ColorJitter', 'RandomCrop', 'Pad', 'RandomAffine', 'RandomRotation', 'RandomPerspective', 'Grayscale', 'ToTensor', 'RandomErasing', 'to_tensor', 'hflip', 'vflip', 'resize', 'pad', 'affine', 'rotate', 'perspective', 'to_grayscale', 'crop', 'center_crop', 'adjust_brightness', 'adjust_contrast', 'adjust_hue', 'normalize', 'erase']
g:\app2024\MyProject深度学习AI项目
训练数据集数量: 60000
第一个图片为 (28, 28) [5]
W0829 19:02:45.002585 17368 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.6, Runtime API Version: 11.7
W0829 19:02:45.008549 17368 gpu_resources.cc:164] device: 0, cuDNN Version: 8.4.
loading mnist dataset from ./train/mnist.json.gz ......
mnist dataset load done
训练数据集数量:  50000
epoch: 0, batch: 0, loss is: 2.789569139480591
epoch: 0, batch: 200, loss is: 0.09251288324594498
epoch: 0, batch: 400, loss is: 0.06473854184150696
epoch: 1, batch: 0, loss is: 0.1018374040722847
epoch: 1, batch: 200, loss is: 0.07876559346914291
epoch: 1, batch: 400, loss is: 0.03011542186141014
epoch: 2, batch: 0, loss is: 0.056242216378450394
epoch: 2, batch: 200, loss is: 0.03451666235923767
epoch: 2, batch: 400, loss is: 0.011802399531006813
epoch: 3, batch: 0, loss is: 0.025893133133649826
epoch: 3, batch: 200, loss is: 0.00430287653580308
epoch: 3, batch: 400, loss is: 0.010484364815056324
epoch: 4, batch: 0, loss is: 0.004997999407351017
epoch: 4, batch: 200, loss is: 0.0019390254747122526
epoch: 4, batch: 400, loss is: 0.08761590719223022
epoch: 5, batch: 0, loss is: 0.05072423815727234
epoch: 5, batch: 200, loss is: 0.07972753047943115
epoch: 5, batch: 400, loss is: 0.033000100404024124
epoch: 6, batch: 0, loss is: 0.014615577645599842
epoch: 6, batch: 200, loss is: 0.0034718234091997147
epoch: 6, batch: 400, loss is: 0.05304107815027237
epoch: 7, batch: 0, loss is: 0.013993428088724613
epoch: 7, batch: 200, loss is: 0.047364864498376846
epoch: 7, batch: 400, loss is: 0.006570461671799421
epoch: 8, batch: 0, loss is: 0.05435584858059883
epoch: 8, batch: 200, loss is: 0.003356481436640024
epoch: 8, batch: 400, loss is: 0.0032313629053533077
epoch: 9, batch: 0, loss is: 0.0165287796407938
epoch: 9, batch: 200, loss is: 9.04486223589629e-05
epoch: 9, batch: 400, loss is: 0.0011677269358187914
运行时间Cost time: 71.6329174041748
本次预测的数字是:  0

测试安装情况代码二:

python 复制代码
#MNIST_Good.py
#数据处理部分之前的代码,加入部分数据处理的库
#需要安装:conda install matplotlib==3.5.0
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
import os
import sys
import gzip
import json
import random
import numpy as np
import matplotlib.pyplot as plt
# 导入图像读取第三方库
from PIL import Image,ImageFilter
print(Image.__version__)    #10.4.0
#原来是在pillow的10.0.0版本中,ANTIALIAS方法被删除了,使用新的方法即可Image.LANCZOS
#或降级版本为9.5.0,安装pip install Pillow==9.5.0
print(paddle.__version__)   #2.6.1

print('视觉相关数据集:', paddle.vision.datasets.__all__)
print('自然语言相关数据集:', paddle.text.datasets.__all__)
print('数据处理方法:', paddle.vision.transforms.__all__)

object_path = os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
print(object_path)
sys.path.append(object_path)  #
import common

#data=json.load(open("./work/train-images-idx3-ubyte.gz"))
#print(len(data))

#获取训练集train_dataset
train_dataset = paddle.vision.datasets.MNIST(mode='train')
print('训练数据集数量:',len(train_dataset))  # 60000
#取第一张图片和标签=5
i=0
#for i  in range(20):  
train_data0 = np.array(train_dataset[i][0])
train_label_0 = np.array(train_dataset[i][1])
print('第一个图片为',train_data0.shape,train_label_0)  #(28,28),5

'''
plt.figure("Image") # 图像窗口名称
plt.figure(figsize=(2,2))
plt.imshow(train_data0, cmap=plt.cm.binary)
plt.axis('on') # 关掉坐标轴为 off
plt.title('image') # 图像题目
plt.show()

def sigmoid(x):
    # 直接返回sigmoid函数
    return 1. / (1. + np.exp(-x))
 
# param:起点,终点,间距
x = np.arange(-8, 8, 0.2)
y = sigmoid(x)
plt.plot(x, y)
plt.show()
'''
#===========================================
def load_data(mode='train'):
    datafile = './train/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    # 加载json数据文件
    data = json.load(gzip.open(datafile))
    print('mnist dataset load done')

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28
   
    # 读取到的数据区分训练集,验证集,测试集
    train_set, val_set, eval_set = data
    if mode=='train':
        # 获得训练数据集
        imgs, labels = train_set[0], train_set[1]
    elif mode=='valid':
        # 获得验证数据集
        imgs, labels = val_set[0], val_set[1]
    elif mode=='eval':
        # 获得测试数据集
        imgs, labels = eval_set[0], eval_set[1]
    else:
        raise Exception("mode can only be one of ['train', 'valid', 'eval']")
    print("训练数据集数量: ", len(imgs))
    
    # 校验数据
    imgs_length = len(imgs)

    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(labels))
    
    # 获得数据集长度
    imgs_length = len(imgs)
    
    # 定义数据集每个数据的序号,根据序号读取数据
    index_list = list(range(imgs_length))
    # 读入数据时用到的批次大小
    BATCHSIZE = 100
    
    # 定义数据生成器
    def data_generator():
        if mode == 'train':
            # 训练模式下打乱数据
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        for i in index_list:
            # 将数据处理成希望的类型
            img = np.array(imgs[i]).astype('float32')
            label = np.array(labels[i]).astype('float32')

            # 在使用卷积神经网络结构时,uncomment 下面两行代码
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            #label = np.reshape(labels[i], [1]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('int64')

            imgs_list.append(img) 
            labels_list.append(label)
            if len(imgs_list) == BATCHSIZE:
                # 获得一个batchsize的数据,并返回
                yield np.array(imgs_list), np.array(labels_list)
                # 清空数据读取列表
                imgs_list = []
                labels_list = []
    
        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)
    return data_generator
#===========================================
#数据处理部分之后的代码,数据读取的部分调用Load_data函数
'''    
# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()
        # 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整
        self.fc1 = Linear(in_features=784, out_features=10)
        self.fc2 = Linear(in_features=10, out_features=10)
        # 定义一层全连接输出层,输出维度是1
        self.fc3 = Linear(in_features=10, out_features=1)
    
    # 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数
    def forward(self, inputs):
        # inputs = paddle.reshape(inputs, [inputs.shape[0], 784])
        outputs1 = self.fc1(inputs)
        outputs1 = F.sigmoid(outputs1)
        outputs2 = self.fc2(outputs1)
        outputs2 = F.sigmoid(outputs2)
        outputs_final = self.fc3(outputs2)
        return outputs_final
'''
#===========================================
'''   ''' 
#在卷积神经网络中,通常使用2×2大小的池化窗口,步幅也使用2,填充为0
#通过这种方式的池化,输出特征图的高和宽都减半,但通道数不会改变。

# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
     def __init__(self):
         super(MNIST, self).__init__()
         
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
         # 定义一层全连接层,输出维度是10
         self.fc = Linear(in_features=980, out_features=10)
         
    # 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
    # 卷积层激活函数使用Relu,全连接层不使用激活函数
     def forward(self, inputs):
         x = self.conv1(inputs)
         x = F.relu(x)
         x = self.max_pool1(x)
         x = self.conv2(x)
         x = F.relu(x)
         x = self.max_pool2(x)
         x = paddle.reshape(x, [x.shape[0], -1])
         x = self.fc(x)
         return x
#===========================================   
     
# 训练配置,并启动训练过程
#网络结构部分之后的代码,保持不变
def train(model):
    #开启GPU    #运行时间Cost time: 69.26997494697571
    use_gpu = True
    paddle.device.set_device('gpu:0') if use_gpu else paddle.device.set_device('cpu')
    model.train()
    #调用加载数据的函数,获得MNIST训练数据集
    train_loader = load_data('train')
    #优化模型参数
    # 使用SGD优化器,learning_rate设置为0.01时loss下降明显最优   #cost time=705.9078650474548=11.75分钟
    #opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())     #运行时间cost time: 705.9078650474548
    #opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())    #运行时间Cost time: 705.5072021484375
    #opt = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters())    #运行时间Cost time: 708.7056725025177
    #opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9, parameters=model.parameters())   #运行时间Cost time: 707.7317929267883
    #opt = paddle.optimizer.Adagrad(learning_rate=0.01, parameters=model.parameters())    #运行时间Cost time: 756.807531118393
    opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())        #运行时间Cost time: 702.2813944816589
    # 训练5轮
    EPOCH_NUM = 10
    # MNIST图像高和宽
    IMG_ROWS, IMG_COLS = 28, 28
    loss_list = []
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据
            images, labels = data
            images = paddle.to_tensor(images)
            labels = paddle.to_tensor(labels)
            
            #前向计算的过程
            predicts = model(images)
            
            #计算损失,使用交叉熵损失函数,取一个批次样本损失的平均值
            loss = F.cross_entropy(predicts, labels)
            avg_loss = paddle.mean(loss)

            #每训练200批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
                loss = avg_loss.numpy(); #[0]
                loss_list.append(loss)
                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            # 最小化loss,更新参数
            opt.step()
            # 清除梯度
            opt.clear_grad()

    #保存模型参数
    paddle.save(model.state_dict(), 'mnist_test.pdparams')
    return loss_list

startTime=common.startTime()

model = MNIST()
loss_list = train(model)

common.runTime(startTime)

# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
    # 从img_path中读取图像,并转为灰度图
    im = Image.open(img_path).convert('L')
    im = im.resize((28, 28), Image.LANCZOS)
    im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
    # 图像归一化
    im = 1.0 - im / 255.
    return im

# 定义预测过程
model = MNIST()
params_file_path = 'mnist_test.pdparams'
img_path = './data/example_0.jpg'
# 加载模型参数
param_dict = paddle.load(params_file_path)
model.load_dict(param_dict)
# 灌入数据
model.eval()
tensor_img = load_image(img_path)
#模型反馈10个分类标签的对应概率
results = model(paddle.to_tensor(tensor_img))
#取概率最大的标签作为预测输出
lab = np.argsort(results.numpy())
print("本次预测的数字是: ", lab[0][-1])

安装后环境组件列表:

python 复制代码
(rs) G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop>conda list
# packages in environment at C:\Users\Administrator\.conda\envs\rs:
#
# Name                    Version                   Build  Channel
anyio                     4.4.0              pyhd8ed1ab_0    conda-forge
astor                     0.8.1              pyh9f0ad1d_0    conda-forge
babel                     2.16.0                   pypi_0    pypi
bce-python-sdk            0.9.19                   pypi_0    pypi
beautifulsoup4            4.12.3                   pypi_0    pypi
blinker                   1.8.2                    pypi_0    pypi
blosc                     1.21.1               hcbbf2c4_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
boost-cpp                 1.76.0               h54f0996_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
branca                    0.7.2                    pypi_0    pypi
brotli                    1.1.0                hcfcfb64_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
brotli-bin                1.1.0                hcfcfb64_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
brotli-python             1.1.0            py39h99910a6_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
bzip2                     1.0.8                h2466b09_7    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
ca-certificates           2024.7.4             h56e8100_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
cachetools                5.5.0                    pypi_0    pypi
cairo                     1.16.0            hd28d34b_1006    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
certifi                   2024.7.4           pyhd8ed1ab_0    conda-forge
cffi                      1.17.0           py39ha55e580_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
cfitsio                   3.470                h0af3d06_7    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
chardet                   5.2.0                    pypi_0    pypi
charset-normalizer        3.3.2              pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
click                     8.1.7                    pypi_0    pypi
cloudpickle               3.0.0                    pypi_0    pypi
colorama                  0.4.6                    pypi_0    pypi
cudatoolkit               11.7.1              haa0b59a_13    conda-forge
cudnn                     8.4.1.50             hf5f08ae_0    conda-forge
curl                      8.1.2                h68f0423_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
cycler                    0.12.1             pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
cython                    3.0.11                   pypi_0    pypi
dask                      2024.8.0                 pypi_0    pypi
decorator                 5.1.1              pyhd8ed1ab_0    conda-forge
earthengine-api           0.1.418                  pypi_0    pypi
easydict                  1.13                     pypi_0    pypi
ee-extra                  0.0.15                   pypi_0    pypi
eemont                    0.3.6                    pypi_0    pypi
et-xmlfile                1.1.0                    pypi_0    pypi
exceptiongroup            1.2.2              pyhd8ed1ab_0    conda-forge
expat                     2.6.2                h63175ca_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
filelock                  3.15.4                   pypi_0    pypi
filterpy                  1.4.5                      py_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
flask                     3.0.3                    pypi_0    pypi
flask-babel               4.0.0                    pypi_0    pypi
foliume                   0.0.1                    pypi_0    pypi
font-ttf-dejavu-sans-mono 2.37                 hab24e00_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
font-ttf-inconsolata      3.000                h77eed37_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
font-ttf-source-code-pro  2.038                h77eed37_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
font-ttf-ubuntu           0.83                 h77eed37_2    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
fontconfig                2.14.2               hbde0cde_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
fonts-conda-ecosystem     1                             0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
fonts-conda-forge         1                             0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
fonttools                 4.53.1           py39ha55e580_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
freetype                  2.12.1               hdaf720e_2    conda-forge
freexl                    1.0.6                h67ca5e6_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
fsspec                    2024.6.1                 pypi_0    pypi
future                    1.0.0                    pypi_0    pypi
gdal                      3.1.3            py39hda8168b_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
geographiclib             2.0                      pypi_0    pypi
geojson                   3.1.0                    pypi_0    pypi
geopy                     2.4.1                    pypi_0    pypi
geos                      3.8.1                he025d50_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
geotiff                   1.6.0                h8884d1a_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
gettext                   0.22.5               h5728263_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
gettext-tools             0.22.5               h5a7288d_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
glib                      2.80.2               h0df6a38_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
glib-tools                2.80.2               h2f9d560_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
google-api-core           2.19.2                   pypi_0    pypi
google-api-python-client  2.143.0                  pypi_0    pypi
google-auth               2.34.0                   pypi_0    pypi
google-auth-httplib2      0.2.0                    pypi_0    pypi
google-cloud-core         2.4.1                    pypi_0    pypi
google-cloud-storage      2.18.2                   pypi_0    pypi
google-crc32c             1.5.0                    pypi_0    pypi
google-resumable-media    2.7.2                    pypi_0    pypi
googleapis-common-protos  1.65.0                   pypi_0    pypi
gst-plugins-base          1.24.4               hba88be7_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
gstreamer                 1.24.4               h5006eae_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
h11                       0.14.0             pyhd8ed1ab_0    conda-forge
h2                        4.1.0              pyhd8ed1ab_0    conda-forge
hdf4                      4.2.15               h1b1b6ef_5    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
hdf5                      1.10.6          nompi_h5268f04_1114    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
hpack                     4.0.0              pyh9f0ad1d_0    conda-forge
httpcore                  1.0.5              pyhd8ed1ab_0    conda-forge
httplib2                  0.22.0                   pypi_0    pypi
httpx                     0.27.2             pyhd8ed1ab_0    conda-forge
hyperframe                6.0.1              pyhd8ed1ab_0    conda-forge
icu                       67.1                 h33f27b4_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
idna                      3.8                pyhd8ed1ab_0    conda-forge
imageio                   2.35.1                   pypi_0    pypi
importlib-metadata        8.4.0                    pypi_0    pypi
intel-openmp              2024.2.1          h57928b3_1083    conda-forge
itsdangerous              2.2.0                    pypi_0    pypi
jinja2                    3.1.4                    pypi_0    pypi
joblib                    1.4.2                    pypi_0    pypi
jpeg                      9e                   h8ffe710_2    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
kealib                    1.4.14               h96bfa42_2    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
kiwisolver                1.4.5            py39h1f6ef14_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
krb5                      1.20.1               h6609f42_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
lap                       0.4.0                    pypi_0    pypi
lazy-loader               0.4                      pypi_0    pypi
lcms2                     2.12                 h2a16943_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
lerc                      3.0                  h0e60522_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libasprintf               0.22.5               h5728263_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libasprintf-devel         0.22.5               h5728263_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libblas                   3.9.0              23_win64_mkl    conda-forge
libbrotlicommon           1.1.0                hcfcfb64_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libbrotlidec              1.1.0                hcfcfb64_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libbrotlienc              1.1.0                hcfcfb64_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libcblas                  3.9.0              23_win64_mkl    conda-forge
libclang                  10.0.1          default_hf44288c_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libclang13                16.0.0          default_h45d3cf4_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libcurl                   8.1.2                h68f0423_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libdeflate                1.10                 h8ffe710_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libexpat                  2.6.2                h63175ca_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libffi                    3.4.2                h8ffe710_5    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libgdal                   3.1.3                h0e5aa5a_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libgettextpo              0.22.5               h5728263_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libgettextpo-devel        0.22.5               h5728263_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libglib                   2.80.2               h0df6a38_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libhwloc                  2.11.1          default_h8125262_1000    conda-forge
libiconv                  1.17                 hcfcfb64_2    conda-forge
libintl                   0.22.5               h5728263_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libintl-devel             0.22.5               h5728263_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libjpeg-turbo             2.1.4                hcfcfb64_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libkml                    1.3.0             hd45a9bc_1016    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
liblapack                 3.9.0              23_win64_mkl    conda-forge
liblapacke                3.9.0              23_win64_mkl    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libnetcdf                 4.7.4           nompi_h3a9aa94_107    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libogg                    1.3.5                h2466b09_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libopencv                 4.4.0                    py39_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libpng                    1.6.43               h19919ed_0    conda-forge
libpq                     12.15                hb652d5d_1    https://mirrors.ustc.edu.cn/anaconda/pkgs/main
librttopo                 1.1.0                h6a4060e_4    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libspatialite             5.0.1                h37d8b57_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libsqlite                 3.46.0               h2466b09_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libssh2                   1.10.0               h680486a_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libtiff                   4.2.0                h763f289_2    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libvorbis                 1.3.7                h0e60522_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libwebp                   1.4.0                h2466b09_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libwebp-base              1.4.0                hcfcfb64_0    conda-forge
libxcb                    1.13              hcd874cb_1004    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libxml2                   2.12.7               h283a6d9_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libzip                    1.9.2                hfed4ece_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libzlib                   1.2.13               h2466b09_6    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
libzlib-wapi              1.2.13               h2466b09_6    conda-forge
llvmlite                  0.39.1                   pypi_0    pypi
locket                    1.0.0                    pypi_0    pypi
lz4-c                     1.9.3                h8ffe710_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
m2w64-gcc-libgfortran     5.3.0                         6    conda-forge
m2w64-gcc-libs            5.3.0                         7    conda-forge
m2w64-gcc-libs-core       5.3.0                         7    conda-forge
m2w64-gmp                 6.1.0                         2    conda-forge
m2w64-libwinpthread-git   5.0.0.4634.697f757               2    conda-forge
markupsafe                2.1.5                    pypi_0    pypi
matplotlib                3.5.0            py39hcbf5309_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
matplotlib-base           3.5.0            py39h581301d_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
mkl                       2024.1.0           h66d3029_694    conda-forge
motmetrics                1.4.0                    pypi_0    pypi
msys2-conda-epoch         20160418                      1    conda-forge
munch                     4.0.0                    pypi_0    pypi
munkres                   1.1.4              pyh9f0ad1d_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
natsort                   8.4.0                    pypi_0    pypi
networkx                  3.2.1                    pypi_0    pypi
numba                     0.56.2                   pypi_0    pypi
numpy                     1.22.4                   pypi_0    pypi
opencv                    4.4.0                    py39_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
opencv-contrib-python     3.4.18.65                pypi_0    pypi
opencv-python             4.6.0.66                 pypi_0    pypi
openjpeg                  2.3.1                h48faf41_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
openpyxl                  3.1.5                    pypi_0    pypi
openssl                   1.1.1w               hcfcfb64_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
opt_einsum                3.3.0              pyhc1e730c_2    conda-forge
packaging                 24.1               pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
paddlepaddle-gpu          2.6.1.post117            pypi_0    pypi
paddlers                  1.0.0                    pypi_0    pypi
paddleslim                0.0.0.dev0               pypi_0    pypi
pandas                    2.0.3                    pypi_0    pypi
partd                     1.4.2                    pypi_0    pypi
pcre                      8.45                 h0e60522_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pcre2                     10.43                h17e33f8_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pillow                    10.4.0                   pypi_0    pypi
pip                       24.2               pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pixman                    0.43.4               h63175ca_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
platformdirs              4.2.2              pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
ply                       3.11               pyhd8ed1ab_2    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pooch                     1.8.2              pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
poppler                   0.89.0               h7c6e155_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
poppler-data              0.4.12               hd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
postgresql                12.15                hb652d5d_1    https://mirrors.ustc.edu.cn/anaconda/pkgs/main
proj                      7.1.1                h7d85306_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
proto-plus                1.24.0                   pypi_0    pypi
psutil                    6.0.0                    pypi_0    pypi
pthread-stubs             0.4               hcd874cb_1001    conda-forge
pthreads-win32            2.9.1                hfa6e2cd_3    conda-forge
py-opencv                 4.4.0            py39h9cd51e4_3    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pyasn1                    0.6.0                    pypi_0    pypi
pyasn1-modules            0.4.0                    pypi_0    pypi
pycocotools               2.0.8                    pypi_0    pypi
pycparser                 2.22               pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pycryptodome              3.20.0                   pypi_0    pypi
pyparsing                 3.1.4              pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pyqt                      5.12.3           py39hcbf5309_8    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pyqt-impl                 5.12.3           py39h415ef7b_8    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pyqt5-sip                 4.19.18          py39h415ef7b_8    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pyqtchart                 5.12             py39h415ef7b_8    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pyqtwebengine             5.12.1           py39h415ef7b_8    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
pysocks                   1.7.1              pyh0701188_6    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
python                    3.9.15          h0269646_0_cpython    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
python-box                7.2.0                    pypi_0    pypi
python-dateutil           2.9.0              pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
python_abi                3.9                      5_cp39    conda-forge
pytz                      2024.1                   pypi_0    pypi
pywavelets                1.6.0                    pypi_0    pypi
pyyaml                    6.0.2                    pypi_0    pypi
pyzmq                     26.2.0                   pypi_0    pypi
qt                        5.12.9               hb2cf2c5_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
rarfile                   4.2                      pypi_0    pypi
requests                  2.32.3             pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
rsa                       4.9                      pypi_0    pypi
scikit-image              0.21.0                   pypi_0    pypi
scikit-learn              0.24.2                   pypi_0    pypi
scipy                     1.13.1                   pypi_0    pypi
seaborn                   0.13.2                   pypi_0    pypi
setuptools                59.8.0                   pypi_0    pypi
shapely                   2.0.6                    pypi_0    pypi
sip                       6.7.12           py39h99910a6_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
six                       1.16.0             pyh6c4a22f_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
snappy                    1.1.10               hfb803bf_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
sniffio                   1.3.1              pyhd8ed1ab_0    conda-forge
soupsieve                 2.6                      pypi_0    pypi
spyndex                   0.6.0                    pypi_0    pypi
sqlite                    3.46.0               h2466b09_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
swig                      4.2.1                    pypi_0    pypi
tbb                       2021.12.0            hc790b64_4    conda-forge
threadpoolctl             3.5.0                    pypi_0    pypi
tifffile                  2024.8.28                pypi_0    pypi
tiledb                    2.1.6                hf84e3da_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
tk                        8.6.13               h5226925_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
toml                      0.10.2             pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
tomli                     2.0.1              pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
toolz                     0.12.1                   pypi_0    pypi
tornado                   6.4.1            py39ha55e580_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
tqdm                      4.66.5                   pypi_0    pypi
typing_extensions         4.12.2             pyha770c72_0    conda-forge
tzdata                    2024.1                   pypi_0    pypi
ucrt                      10.0.22621.0         h57928b3_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
unicodedata2              15.1.0           py39ha55989b_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
uriparser                 0.9.8                h5a68840_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
uritemplate               4.1.1                    pypi_0    pypi
urllib3                   2.2.2              pyhd8ed1ab_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
vc                        14.3                h8a93ad2_20    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
vc14_runtime              14.40.33810         hcc2c482_20    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
visualdl                  2.5.3                    pypi_0    pypi
vs2015_runtime            14.40.33810         h3bf8584_20    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
werkzeug                  3.0.4                    pypi_0    pypi
wheel                     0.44.0             pyhd8ed1ab_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
win_inet_pton             1.1.0              pyhd8ed1ab_6    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
xarray                    2023.12.0                pypi_0    pypi
xerces-c                  3.2.5                he0c23c2_1    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
xmltodict                 0.13.0                   pypi_0    pypi
xorg-libxau               1.0.11               hcd874cb_0    conda-forge
xorg-libxdmcp             1.1.3                hcd874cb_0    conda-forge
xz                        5.2.6                h8d14728_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
zipp                      3.20.1                   pypi_0    pypi
zlib                      1.2.13               h2466b09_6    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
zstandard                 0.19.0           py39ha55989b_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge
zstd                      1.4.9                h6255e5f_0    https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

(rs) G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop>

本blog地址:https://blog.csdn.net/hsg77

相关推荐
小陈phd2 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao4 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI7 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1237 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界8 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221518 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2518 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街9 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
畅联云平台9 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网
加密新世界9 小时前
优化 Solana 程序
人工智能·算法·计算机视觉