[iBOT] Image BERT Pre-Training with Online Tokenizer

1、目的

探索visual tokenizer编码下的MIM(Masked Image Modeling)

2、方法

iBOT(i mage B ERT pre-training with O nline Tokenizer)

1)knowledge distillation(KD)

distill knowledge from the tokenizer

2)self-distillation

twin teacher as online tokenizer

3)visual tokenizer

-> transform the masked patches to supervisory signals for the target model

-> 通过enforce the similarity of cross-view images on class tokens,来捕获到high-level visual semantics

-> 无须额外的训练,通过momentum update来和MIM一同被优化

-> online,而不是pre-fixed

4)网络结构

->

-> 用softmax之后的token,而非ont-hot

5)multi-crop

6)MIM

​​​​​​​

3、结论

1)iBOT is more scalable to larger models

2)iBOT requires more data to train larger model

相关推荐
带娃的IT创业者7 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
调皮的芋头31 分钟前
iOS各个证书生成细节
人工智能·ios·app·aigc
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh3 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
Logout:4 小时前
[AI]docker封装包含cuda cudnn的paddlepaddle PaddleOCR
人工智能·docker·paddlepaddle
OJAC近屿智能4 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能
代码猪猪傻瓜coding5 小时前
关于 形状信息提取的说明
人工智能·python·深度学习