[iBOT] Image BERT Pre-Training with Online Tokenizer

1、目的

探索visual tokenizer编码下的MIM(Masked Image Modeling)

2、方法

iBOT(i mage B ERT pre-training with O nline Tokenizer)

1)knowledge distillation(KD)

distill knowledge from the tokenizer

2)self-distillation

twin teacher as online tokenizer

3)visual tokenizer

-> transform the masked patches to supervisory signals for the target model

-> 通过enforce the similarity of cross-view images on class tokens,来捕获到high-level visual semantics

-> 无须额外的训练,通过momentum update来和MIM一同被优化

-> online,而不是pre-fixed

4)网络结构

->

-> 用softmax之后的token,而非ont-hot

5)multi-crop

6)MIM

​​​​​​​

3、结论

1)iBOT is more scalable to larger models

2)iBOT requires more data to train larger model

相关推荐
麻雀无能为力2 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心2 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield2 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域4 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技4 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_14 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎5 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎5 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊5 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪