OpenCV颜色空间转换(1)颜色空间转换函数cvtColor()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将图像从一个颜色空间转换到另一个颜色空间。

此函数将输入图像从一个颜色空间转换到另一个颜色空间。在进行 RGB 颜色空间之间的转换时,应显式指定通道的顺序(RGB 或 BGR)。请注意,在 OpenCV 中,默认的颜色格式通常称为 RGB,但实际上它是 BGR(字节顺序相反)。因此,在标准(24 位)彩色图像中,第一个字节将是 8 位的蓝色组件,第二个字节将是绿色,第三个字节将是红色。第四、第五和第六个字节将是第二个像素(首先是蓝色,然后是绿色,最后是红色),依此类推。

R、G 和 B 通道值的传统范围是:

  • 0 到 255 对于 CV_8U 图像
  • 0 到 65535 对于 CV_16U 图像
  • 0 到 1 对于 CV_32F 图像

在线性变换的情况下,范围无关紧要。但在非线性变换的情况下,输入的 RGB 图像应被归一化到适当的值范围以获得正确的结果,例如,在进行 RGB → Luv* 转换时。例如,如果您有一个直接从 8 位图像转换而来的 32 位浮点图像,并且没有任何缩放,则其值范围将是 0...255 而不是函数假定的 0...1。因此,在调用 cvtColor 之前,您需要先将图像缩小:

cpp 复制代码
img *= 1./255;
cvtColor(img, img, COLOR_BGR2Luv);

如果您使用 cvtColor 函数处理 8 位图像,转换过程中会损失一些信息。对于许多应用而言,这种损失可能不会被注意到,但在需要全色彩范围的应用中或在执行某个操作前后需要转换图像的应用中,建议使用 32 位图像。

如果转换增加了 alpha 通道,其值将被设置为对应通道范围的最大值:对于 CV_8U 为 255,对于 CV_16U 为 65535,对于 CV_32F 为 1。

函数原型

cpp 复制代码
void cv::cvtColor	
(
	InputArray 	src,
	OutputArray 	dst,
	int 	code,
	int 	dstCn = 0 
)	

参数

  • 参数src i输入图像:8 位无符号、16 位无符号(CV_16UC...)或单精度浮点。
  • 参数dst 输出图像,大小和深度与 src 相同。
  • 参数code 颜色空间转换代码(参见 ColorConversionCodes)。
  • 参数dstCn 目标图像中的通道数。如果该参数为 0,则通道数会根据 src 和 code 自动推断。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char** argv)
{
    // 加载一个图像文件,如果未提供,则使用默认的图像
    cv::Mat image = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/qiu.jpg");

    if (image.empty())
    {
        std::cerr << "Error: Image cannot be loaded!" << std::endl;
        return -1;
    }

    // 创建一个窗口来显示原始图像
    cv::namedWindow("Original Image", cv::WINDOW_AUTOSIZE);
    cv::imshow("Original Image", image);

    // 将图像从 BGR 转换为灰度
    cv::Mat grayImage;
    cv::cvtColor(image, grayImage, cv::COLOR_BGR2GRAY);

    // 创建一个窗口来显示灰度图像
    cv::namedWindow("Grayscale Image", cv::WINDOW_AUTOSIZE);
    cv::imshow("Grayscale Image", grayImage);

    // 等待用户按键后退出
    cv::waitKey(0);

    return 0;
}

运行结果

相关推荐
学术头条10 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典11 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui14 分钟前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
孙同学要努力19 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司1 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_2 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141653 小时前
Ascend C的编程模型
人工智能