【AI】基于 LLaMa-Factory 和 LoRA 算法的大模型微调

目录

1.Windows

2.Linux

3.微调操作(待更新)


1.Windows

LLaMA-Factory 的 Github地址:https://github.com/hiyouga/LLaMA-Factory

克隆仓库(我的windows目录是D:\Program Files\LLaMa-Factory,linux可以直接在根目录克隆)

复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

切换到项目目录

复制代码
cd LLaMA-Factory

修改配置,将 conda 虚拟环境安装到数据盘

(如果你已经配置过则不用这步)

复制代码
mkdir -p "D:\Program Files\conda\pkgs"
conda config --add pkgs_dirs "D:\Program Files\conda\pkgs"
mkdir -p "D:\Program Files\conda\envs"
conda config --add envs_dirs "D:\Program Files\conda\envs"

或者直接去c盘修改配置(C:\Users\Administrator\.condarc)

按下win键,输入Anaconda Prompt,用管理员打开

(如果你已经将conda放到环境变量,就在当前目录操作即可)

创建 conda 虚拟环境(一定要 3.10 的 python 版本,不然和 LLaMA-Factory 不兼容)

复制代码
conda create -n llama-factory python=3.10

接受所有条款,然后重新执行上述操作

复制代码
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/msys2

激活环境

复制代码
conda activate llama-factory

下载依赖

复制代码
pip install -e ".[torch,metrics]"

从错误信息可以看出两个主要问题:

  1. SSL证书验证失败 :无法通过HTTPS连接到PyPI下载setuptools

  2. pip版本过旧:您使用的是pip 20.3.1,而最新版本是25.0.1

报错的话就先激活环境,同时一定要初始化(当前目录或者是Anaconda Prompt)

复制代码
conda init

重新下载依赖即可

检验是否安装成功

复制代码
llamafactory-cli version

启动 LLama-Factory 的可视化微调界面 (由 Gradio 驱动)

复制代码
llamafactory-cli webui

访问LLaMA Factory (QXC-20250903GVX)

这里我们需要新开一个终端(D:\Program Files\LLaMa-Factory输入cmd),记得要先激活llama-factory环境

创建文件夹统一存放所有基座模型

复制代码
mkdir "D:\Program Files\hugging-face"

修改 HuggingFace 的镜像源

复制代码
set HF_ENDPOINT=https://hf-mirror.com

修改模型下载的默认位置

复制代码
set "HF_HOME=D:\Program Files\hugging-face"

这种配置方式只在当前 shell 会话中有效,如果你希望这个环境变量在每次启动终端时都生效,可以执行以下操作(但没必要)

复制代码
setx HF_ENDPOINT "https://hf-mirror.com"
setx "HF_HOME=D:\Program Files\hugging-ace"

检查环境变量是否生效

复制代码
echo %HF_ENDPOINT%
echo %HF_HOME%

安装 HuggingFace 官方下载工具

复制代码
pip install -U huggingface_hub

下载可能会报如下错误,这是因为 hugging-face 的版本太高了,安装低版本的就可以了

安装低版本,再次执行上述操作即可

复制代码
pip install "huggingface_hub<1.0"

执行下载命令

复制代码
huggingface-cli download --resume-download deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

下载之后就可以直接开始微调了

2.Linux

大部分操作跟windows一样

克隆仓库(我的windows目录是D:\Program Files\LLaMa-Factory,linux可以直接在根目录克隆)

复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

切换到项目目录

复制代码
cd LLaMA-Factory

修改配置,将 conda 虚拟环境安装到数据盘

(如果你已经配置过则不用这步)

复制代码
mkdir -p /root/autodl-tmp/conda/pkgs 
conda config --add pkgs_dirs /root/autodl-tmp/conda/pkgs 
mkdir -p /root/autodl-tmp/conda/envs 
conda config --add envs_dirs /root/autodl-tmp/conda/envs

以管理员方式打开Anacnoda Prompt (如果你已经将conda放到环境变量,就在当前目录操作即可)

创建 conda 虚拟环境(一定要 3.10 的 python 版本,不然和 LLaMA-Factory 不兼容)

复制代码
conda create -n llama-factory python=3.10

如有需要,接受所有条款,然后重新执行上述操作

复制代码
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/msys2

激活环境

复制代码
conda activate llama-factory

下载依赖

复制代码
pip install -e ".[torch,metrics]"

报错的话就先激活环境,同时一定要初始化(当前目录或者是Anaconda Prompt),重新执行上述命令

复制代码
conda init

检验是否安装成功

复制代码
llamafactory-cli version

启动 LLama-Factory 的可视化微调界面 (由 Gradio 驱动)

复制代码
llamafactory-cli webui

访问LLaMA Factory (QXC-20250903GVX)

这里我们需要新开一个终端,记得要先激活llama-factory环境

创建文件夹统一存放所有基座模型

复制代码
mkdir hugging-face

修改 HuggingFace 的镜像源

复制代码
export HF_ENDPOINT=https://hf-mirror.com

修改模型下载的默认位置

复制代码
export HF_HOME=/root/autodl-tmp/Hugging-Face

这种配置方式只在当前 shell 会话中有效,如果你希望这个环境变量在每次启动终端时都生效,可以执行以下操作(但没必要)

复制代码
echo 'export HF_ENDPOINT="https://hf-mirror.com"' >> ~/.bashrc
echo 'export HF_HOME="/root/autodl-tmp/hugging-face"' >> ~/.bashrc

# 重新加载配置
source ~/.bashrc

检查环境变量是否生效

复制代码
echo $HF_ENDPOINT
echo $HF_HOME

安装 HuggingFace 官方下载工具

复制代码
pip install -U huggingface_hub

下载可能会报如下错误,这是因为 hugging-face 的版本太高了,安装低版本的就可以了

安装低版本,再次执行上述操作即可

复制代码
pip install "huggingface_hub<1.0"

执行下载命令

复制代码
huggingface-cli download --resume-download deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

下载之后就可以直接开始微调了

3.微调操作(待更新)

...

相关推荐
张彦峰ZYF2 小时前
大模型是如何工作的?从原理到通义生态的落地实践
人工智能·大模型是如何工作的?·从原理到通义生态的落地实践·大模型价值是与真实业务深度融合
jimmyleeee2 小时前
人工智能基础知识笔记三十一:Langfuse
人工智能·笔记
桂花饼2 小时前
小镜AI开放平台:Sora 2 API 低价高并发解决方案评测整理
人工智能·qwen3-next·sora2·nano banana 2·gemini-3-pro·gpt-5.2·glm-4.7
skywalk81632 小时前
小米大模型mimo-v2-flash简单接触
人工智能·小米
争不过朝夕,又念着往昔2 小时前
C++AI
开发语言·c++·人工智能
Rui_Freely2 小时前
Vins-Fusion之 TrackImage-Lukas-Kanade光流法(四)
人工智能
Hcoco_me2 小时前
大模型面试题26:Adam优化器小白版速懂
人工智能·rnn·自然语言处理·lstm·word2vec
kevin_kang2 小时前
25-客服工单系统实战(二):RAG检索与智能问答
人工智能
njsgcs2 小时前
基于vlm+ocr+yolo的一键ai从模之屋下载模型
人工智能·python·yolo·ocr·vlm