pytorch计算张量中三维向量的欧式距离

如果 X 是一个包含多个三维向量的张量,形状为 [b, n, 3],其中 b 是批次大小,n 是每个批次中的向量数量,那么可以使用类似的广播机制来计算同一批次内不同位置的三维向量之间的欧式距离。

以下是具体实现步骤:

  1. 扩展张量的维度 :需要将 X 的维度扩展,以便能够利用广播机制计算每对向量之间的差值。

  2. 计算差值并求平方和:计算向量之间的差值,并对差值的平方求和。

  3. 计算欧式距离:对平方和取平方根,得到欧式距离。

    import torch

    假设 X 是形状为 [b, n, 3] 的张量,b 是批次大小,n 是向量的数量

    b = 128
    n = 100
    X = torch.randn(b, n, 3) # 示例输入

    第一步:扩展维度

    X_expanded_1 = X.unsqueeze(2) # 形状为 [b, n, 1, 3]
    X_expanded_2 = X.unsqueeze(1) # 形状为 [b, 1, n, 3]

    第二步:计算每对向量之间的差值的平方和

    dX = X_expanded_1 - X_expanded_2 # 形状为 [b, n, n, 3]
    dX_squared_sum = torch.sum(dX**2, dim=3) # 形状为 [b, n, n]

    第三步:计算欧式距离

    distances = torch.sqrt(dX_squared_sum) # 形状为 [b, n, n]

    distances[k, i, j] 表示批次 k 中位置 i 和位置 j 之间的欧式距离

    print(distances)

解释:

  1. 扩展维度X.unsqueeze(2)X 的形状从 [b, n, 3] 变为 [b, n, 1, 3],而 X.unsqueeze(1) 将其形状变为 [b, 1, n, 3]。通过这种扩展,每个批次内的所有位置对可以使用广播机制进行差值计算。

  2. 计算差值并求平方和dX 是一个形状为 [b, n, n, 3] 的张量,表示每个批次内的每对位置之间的差值。torch.sum(dX**2, dim=3) 对最后一个维度(即三维坐标的维度)求和,得到每对位置之间的平方距离,形状为 [b, n, n]

  3. 计算欧式距离 :最后,使用 torch.sqrt 对平方距离取平方根,得到最终的欧式距离矩阵 distances,其形状为 [b, n, n],表示每个批次内所有位置对之间的欧式距离。

这个 distances 张量的形状为 [b, n, n],其中 distances[k, i, j] 表示批次 k 中位置 i 和位置 j 之间的欧式距离。

相关推荐
九章云极AladdinEdu4 分钟前
临床数据挖掘与分析:利用GPU加速Pandas和Scikit-learn处理大规模数据集
人工智能·pytorch·数据挖掘·pandas·scikit-learn·paddlepaddle·gpu算力
上海锝秉工控4 分钟前
超声波风向传感器:以科技之翼,捕捉风的每一次呼吸
大数据·人工智能·科技
说私域5 分钟前
基于开源AI智能名片、链动2+1模式与S2B2C商城小程序的流量运营与个人IP构建研究
人工智能·小程序·流量运营
海天一色y1 小时前
Pycharm(二十一)递归删除文件夹
ide·python·pycharm
xiaoxiaoxiaolll2 小时前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师2 小时前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客5 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei5 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910135 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享6 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构