pytorch计算张量中三维向量的欧式距离

如果 X 是一个包含多个三维向量的张量,形状为 [b, n, 3],其中 b 是批次大小,n 是每个批次中的向量数量,那么可以使用类似的广播机制来计算同一批次内不同位置的三维向量之间的欧式距离。

以下是具体实现步骤:

  1. 扩展张量的维度 :需要将 X 的维度扩展,以便能够利用广播机制计算每对向量之间的差值。

  2. 计算差值并求平方和:计算向量之间的差值,并对差值的平方求和。

  3. 计算欧式距离:对平方和取平方根,得到欧式距离。

    import torch

    假设 X 是形状为 [b, n, 3] 的张量,b 是批次大小,n 是向量的数量

    b = 128
    n = 100
    X = torch.randn(b, n, 3) # 示例输入

    第一步:扩展维度

    X_expanded_1 = X.unsqueeze(2) # 形状为 [b, n, 1, 3]
    X_expanded_2 = X.unsqueeze(1) # 形状为 [b, 1, n, 3]

    第二步:计算每对向量之间的差值的平方和

    dX = X_expanded_1 - X_expanded_2 # 形状为 [b, n, n, 3]
    dX_squared_sum = torch.sum(dX**2, dim=3) # 形状为 [b, n, n]

    第三步:计算欧式距离

    distances = torch.sqrt(dX_squared_sum) # 形状为 [b, n, n]

    distances[k, i, j] 表示批次 k 中位置 i 和位置 j 之间的欧式距离

    print(distances)

解释:

  1. 扩展维度X.unsqueeze(2)X 的形状从 [b, n, 3] 变为 [b, n, 1, 3],而 X.unsqueeze(1) 将其形状变为 [b, 1, n, 3]。通过这种扩展,每个批次内的所有位置对可以使用广播机制进行差值计算。

  2. 计算差值并求平方和dX 是一个形状为 [b, n, n, 3] 的张量,表示每个批次内的每对位置之间的差值。torch.sum(dX**2, dim=3) 对最后一个维度(即三维坐标的维度)求和,得到每对位置之间的平方距离,形状为 [b, n, n]

  3. 计算欧式距离 :最后,使用 torch.sqrt 对平方距离取平方根,得到最终的欧式距离矩阵 distances,其形状为 [b, n, n],表示每个批次内所有位置对之间的欧式距离。

这个 distances 张量的形状为 [b, n, n],其中 distances[k, i, j] 表示批次 k 中位置 i 和位置 j 之间的欧式距离。

相关推荐
HyperAI超神经6 分钟前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
galileo201617 分钟前
转化为MarkDown
人工智能
沐霜枫叶23 分钟前
解决pycharm无法识别miniconda
ide·python·pycharm
途途途途1 小时前
精选9个自动化任务的Python脚本精选
数据库·python·自动化
说私域1 小时前
私域电商逆袭密码:AI 智能名片小程序与商城系统如何梦幻联动
人工智能·小程序
蓝染然1 小时前
jax踩坑指南——人类早期驯服jax实录
python
请站在我身后1 小时前
复现Qwen-Audio 千问
人工智能·深度学习·语言模型·语音识别
许野平1 小时前
Rust: enum 和 i32 的区别和互换
python·算法·rust·enum·i32
问道飞鱼1 小时前
【Python知识】Python进阶-什么是装饰器?
开发语言·python·装饰器
love you joyfully1 小时前
目标检测与R-CNN——paddle部分
人工智能·目标检测·cnn·paddle