分类预测|基于CNN-LSTM-Attention卷积-长短时记忆-注意力数据分类Matlab程序 直接运行程序或替换数据集运行程序

分类预测|基于CNN-LSTM-Attention卷积-长短时记忆-注意力数据分类Matlab程序 直接运行程序或替换数据集运行程序

文章目录

分类预测|基于CNN-LSTM-Attention卷积-长短时记忆-注意力数据分类Matlab程序 直接运行程序或替换数据集运行程序

一、基本原理

CNN-LSTM-Attention结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制,用于处理序列数据的分类问题。下面详细解释每个组件及其结合的原理和流程:

1. 卷积神经网络(CNN)

CNN用于提取输入数据的局部特征。它在序列数据中可以识别局部模式或特征。

CNN的基本步骤:
  1. 卷积层

    应用卷积核对输入数据进行卷积操作,生成特征图(feature map)。

  2. 激活函数

    使用激活函数(如ReLU)对卷积结果进行非线性变换。

  3. 池化层

    应用池化操作(如最大池化)来减少特征图的维度,提取重要特征。

2. 长短期记忆网络(LSTM)

LSTM用于处理时间序列数据,能够捕捉序列中的长期依赖关系。

LSTM的基本步骤:
  1. 输入门

    控制当前输入信息的流入程度。

  2. 遗忘门

    控制先前记忆单元的遗忘程度。

  3. 记忆单元

    更新和维护记忆信息。

  4. 输出门

    决定当前时间步的输出。

3. 注意力机制(Attention)

注意力机制用于提升模型对重要特征的关注,增强对关键信息的权重。

注意力机制的基本步骤:
  1. 计算注意力权重

    计算每个时间步的注意力权重,用于衡量其重要性。

  2. 加权求和

    根据注意力权重对LSTM输出进行加权求和,得到加权后的表示。

4. CNN-LSTM-Attention结合的流程

  1. 输入数据

    输入数据可以是序列数据(如时间序列或文本数据)。

  2. 特征提取(CNN部分)

    • 将输入数据传入CNN网络进行特征提取。
    • 卷积层提取局部特征,池化层减少维度。
  3. 序列建模(LSTM部分)

    • 将CNN提取的特征序列传入LSTM网络。
    • LSTM捕捉时间序列中的长期依赖关系。
  4. 注意力加权(Attention部分)

    • 计算LSTM输出的注意力权重。
    • 加权求和得到最终的加权表示,用于表示序列的重要特征。
  5. 分类预测

    • 将加权表示传入全连接层进行分类。
    • 输出最终的分类结果。

总结

CNN-LSTM-Attention结合利用CNN提取局部特征,LSTM捕捉时间序列的长期依赖,注意力机制提升关键特征的权重,最终通过全连接层进行分类预测。这种组合方法能够有效处理复杂的序列数据分类任务。

二、实验结果




三、核心代码

matlab 复制代码
%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于

优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM--Attention,VMD--LSTM,PCA--BP等等

用于数据的分类,时序,回归预测。

多特征输入,单输出,多输出

相关推荐
羊小猪~~2 小时前
深度学习项目--基于LSTM的糖尿病预测探究(pytorch实现)
人工智能·pytorch·rnn·深度学习·神经网络·机器学习·lstm
刀客1232 小时前
python3+TensorFlow 2.x(五)CNN
人工智能·cnn·tensorflow
pchmi18 小时前
C# OpenCV机器视觉:利用CNN实现快速模板匹配
人工智能·opencv·cnn·c#·机器视觉·opencvsharp
机器学习之心19 小时前
CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测(Matlab完整源码和数据)
神经网络·matlab·cnn·cnn-bilstm
跟德姆(dom)一起学AI2 天前
0基础跟德姆(dom)一起学AI 自然语言处理22-fasttext文本分类
人工智能·python·深度学习·自然语言处理·分类·transformer
IT古董3 天前
【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
人工智能·深度学习·cnn
缺的不是资料,是学习的心3 天前
使用qwen作为基座训练分类大模型
python·机器学习·分类
漂亮_大男孩3 天前
深度学习|表示学习|卷积神经网络|局部链接是什么?|06
深度学习·学习·cnn
沉木渡香3 天前
[2025分类&时序异常检测指标R-AUC与VUS]
分类·数据挖掘·时序异常检测·vus·r-auc
睡不着还睡不醒3 天前
【深度学习】神经网络实战分类与回归任务
深度学习·神经网络·分类