OPenCV结构分析与形状描述符(2)计算轮廓周长的函数arcLength()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算轮廓的周长或曲线的长度。

该函数计算曲线的长度或闭合轮廓的周长。

如果曲线是闭合的(即首尾相连),则计算的是轮廓的周长。

如果曲线是开放的(即首尾不相连),则计算的是曲线的长度。

函数原型

cpp 复制代码
double cv::arcLength	
(
	InputArray 	curve,
	bool 	closed 
)		

参数

  • 参数curve 输入的二维点向量,存储在 std::vector 或 Mat 中。
  • 参数closed 标志,指示曲线是否是闭合的。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载一张图片
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_COLOR );

    if ( img.empty() )
    {
        std::cerr << "Error: Image cannot be loaded!" << std::endl;
        return -1;
    }

    // 转换为灰度图
    cv::Mat grayImg;
    cv::cvtColor( img, grayImg, cv::COLOR_BGR2GRAY );

    // 二值化处理
    cv::Mat binaryImg;
    cv::threshold( grayImg, binaryImg, 0, 255, cv::THRESH_BINARY_INV + cv::THRESH_OTSU );

    // 查找轮廓
    std::vector< std::vector< cv::Point > > contours;
    cv::findContours( binaryImg, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE );

    // 计算每个轮廓的周长,并进行近似
    std::vector< std::vector< cv::Point > > approxContours( contours.size() );
    for ( size_t i = 0; i < contours.size(); ++i )
    {
        // 计算闭合轮廓的周长
        double perimeter = cv::arcLength( contours[ i ], true );
        std::cout << "Perimeter of the closed contour: " << perimeter << std::endl;

        // 近似轮廓
        cv::approxPolyDP( contours[ i ], approxContours[ i ], 0.02 * perimeter, true );

        // 绘制原始轮廓
        cv::drawContours( img, contours, static_cast< int >( i ), cv::Scalar( 0, 255, 0 ), 2 );

        // 绘制近似后的轮廓
        cv::drawContours( img, approxContours, static_cast< int >( i ), cv::Scalar( 255, 0, 0 ), 2 );
    }

    // 显示结果图像
    cv::imshow( "Contours and Approximations", img );

    // 等待按键,关闭窗口
    cv::waitKey( 0 );

    return 0;
}

运行结果

终端输出:

bash 复制代码
Perimeter of the closed contour: 20.4853
Perimeter of the closed contour: 1176.15

图像:

相关推荐
凌峰的博客1 小时前
基于深度学习的图像安全与隐私保护研究方向调研(中)
人工智能·深度学习·安全
aigcapi6 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪6 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭7 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力7 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
做cv的小昊7 小时前
计算机图形学:【Games101】学习笔记05——着色(插值、高级纹理映射)与几何(基本表示方法)
笔记·opencv·学习·计算机视觉·图形渲染·几何学
Blossom.1187 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_7 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋7 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_7 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain