OPenCV结构分析与形状描述符(2)计算轮廓周长的函数arcLength()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算轮廓的周长或曲线的长度。

该函数计算曲线的长度或闭合轮廓的周长。

如果曲线是闭合的(即首尾相连),则计算的是轮廓的周长。

如果曲线是开放的(即首尾不相连),则计算的是曲线的长度。

函数原型

cpp 复制代码
double cv::arcLength	
(
	InputArray 	curve,
	bool 	closed 
)		

参数

  • 参数curve 输入的二维点向量,存储在 std::vector 或 Mat 中。
  • 参数closed 标志,指示曲线是否是闭合的。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载一张图片
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_COLOR );

    if ( img.empty() )
    {
        std::cerr << "Error: Image cannot be loaded!" << std::endl;
        return -1;
    }

    // 转换为灰度图
    cv::Mat grayImg;
    cv::cvtColor( img, grayImg, cv::COLOR_BGR2GRAY );

    // 二值化处理
    cv::Mat binaryImg;
    cv::threshold( grayImg, binaryImg, 0, 255, cv::THRESH_BINARY_INV + cv::THRESH_OTSU );

    // 查找轮廓
    std::vector< std::vector< cv::Point > > contours;
    cv::findContours( binaryImg, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE );

    // 计算每个轮廓的周长,并进行近似
    std::vector< std::vector< cv::Point > > approxContours( contours.size() );
    for ( size_t i = 0; i < contours.size(); ++i )
    {
        // 计算闭合轮廓的周长
        double perimeter = cv::arcLength( contours[ i ], true );
        std::cout << "Perimeter of the closed contour: " << perimeter << std::endl;

        // 近似轮廓
        cv::approxPolyDP( contours[ i ], approxContours[ i ], 0.02 * perimeter, true );

        // 绘制原始轮廓
        cv::drawContours( img, contours, static_cast< int >( i ), cv::Scalar( 0, 255, 0 ), 2 );

        // 绘制近似后的轮廓
        cv::drawContours( img, approxContours, static_cast< int >( i ), cv::Scalar( 255, 0, 0 ), 2 );
    }

    // 显示结果图像
    cv::imshow( "Contours and Approximations", img );

    // 等待按键,关闭窗口
    cv::waitKey( 0 );

    return 0;
}

运行结果

终端输出:

bash 复制代码
Perimeter of the closed contour: 20.4853
Perimeter of the closed contour: 1176.15

图像:

相关推荐
Java后端的Ai之路12 分钟前
【AI大模型开发】-RAG 技术详解
人工智能·rag
墨香幽梦客12 分钟前
家具ERP口碑榜单,物料配套专用工具推荐
大数据·人工智能
Coder_Boy_21 分钟前
基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解
java·数据库·人工智能·spring boot
敏叔V58724 分钟前
从人类反馈到直接偏好优化:AI对齐技术的实战演进
人工智能
琅琊榜首202027 分钟前
AI赋能短剧创作:从Prompt设计到API落地的全技术指南
人工智能·prompt
测试者家园29 分钟前
Prompt、Agent、测试智能体:测试的新机会,还是新焦虑?
人工智能·prompt·智能体·职业和发展·质量效能·智能化测试·软件开发和测试
嗷嗷哦润橘_35 分钟前
从萝卜纸巾猫到桌游:“蒸蚌大开门”的设计平衡之旅
人工智能·算法·游戏·概率论·桌游
悟纤1 小时前
Suno 爵士歌曲创作提示整理 | Suno高级篇 | 第22篇
大数据·人工智能·suno·suno ai·suno api·ai music
小北方城市网1 小时前
微服务注册中心与配置中心实战(Nacos 版):实现服务治理与配置统一
人工智能·后端·安全·职场和发展·wpf·restful
yl45301 小时前
污泥清淤机器人实践复盘分享
大数据·人工智能·机器人