大语言模型Large Language Model(LLM)

目录

1.大模型的发展历程

2.算力需求

3.大模型api调用


1.大模型的发展历程

维基百科的介绍:https://en.wikipedia.org/wiki/Large_language_model

发展情况

大语言模型的模型参数量一般在数百亿或数千亿个参数,开源大模型主要有Facebook的LLaMA,阿里的通义千问,微软AI研究院Phi-3,谷歌的BERT(2018)等,

2.算力需求

模型参数和显存需求:

模型参数使用2字节或者4字节进行存储;

如果每个模型参数使用2个字节进行存储,

10亿的模型参数,占用显存2GB;

如果冻结预加载的大模型参数,10亿参数的大模型占用显存2GB;

如果微调大模型的参数,10亿参数的模型至少需要显存16G;

对于LLaMA系列开源模型,2023/06发布的LLaMA 2,有不同版本的预训练模型,参数量分别是70亿/130/700亿;2024/04发布的Llama 3,参数量分别是80亿/700亿.

对于个人调试大模型参数,做如下估计:

如果采用微调大模型参数这种方案,以LLaMA的70亿参数为例,需要显存112G,基本不可能实现;

如果采用冻结预加载的大模型参数方案,以LLaMA的70亿参数为例,至少需要显存14G,同时需要设计网络架构,类似LLaMA-Reg:

3.大模型api调用

曾一度(至今),kimi AI助手十分火爆,kimi可以接受多种类型的文件作为输入,并根据提示词输出文件分析结果。通义千问也有类似的功能。如果待处理的文件数量较少,如十几个或者几十个,直接交互式处理足够了,然而,如果待处理的文件数量,如几百几千几万,甚至几十万几百万几亿等,借助交互式的LLM模型调用的调用方式就在操作层面不再可行,可以借助大模型提供的api接口,编程实现大量文件的处理。目前,kimi和QWen模型都支持模型api的调用,并且调用方式很简单,基于python很容易就能实现。类似kimi/QWen,会提供一定量的免费调用api的额度,如果需要处理的文件数量很多,达到几千几万,需要购买tokens,具体见相关网站介绍。在使用大模型工具时,需要注意模型参数的调整,提示词的编辑,关注到一定程度上大模型输出的随机性,尽可能规避随机性对处理结果的影响,尽可能保证处理结果的准确性。

相关推荐
2501_915374351 分钟前
数据清洗的艺术:如何为AI模型准备高质量数据集?
人工智能·机器学习
山北雨夜漫步4 分钟前
机器学习 Day17 朴素贝叶斯算法-----概率论知识
人工智能·算法·机器学习
愚公搬代码17 分钟前
【愚公系列】《Manus极简入门》038-数字孪生设计师:“虚实映射师”
人工智能·agi·ai agent·智能体·manus
tongxianchao1 小时前
精简大语言模型:用于定制语言模型的自适应知识蒸馏
人工智能·语言模型·自然语言处理
PaperTen论文查重1 小时前
反向操作:如何用AI检测工具优化自己的论文“人味”?
人工智能
OpenVINO生态社区1 小时前
【美国将取消对能源之星支持 严重影响AI服务器】
服务器·人工智能·能源
終不似少年遊*1 小时前
MindSpore框架学习项目-ResNet药物分类-数据增强
人工智能·深度学习·分类·数据挖掘·华为云·resnet·modelart
百锦再1 小时前
MK米客方德SD NAND:无人机存储的高效解决方案
人工智能·python·django·sqlite·android studio·无人机·数据库开发
侃山2 小时前
NNLM神经网络语言模型总结
人工智能·神经网络·语言模型
徐行tag2 小时前
深度学习基础
人工智能·深度学习