大语言模型Large Language Model(LLM)

目录

1.大模型的发展历程

2.算力需求

3.大模型api调用


1.大模型的发展历程

维基百科的介绍:https://en.wikipedia.org/wiki/Large_language_model

发展情况

大语言模型的模型参数量一般在数百亿或数千亿个参数,开源大模型主要有Facebook的LLaMA,阿里的通义千问,微软AI研究院Phi-3,谷歌的BERT(2018)等,

2.算力需求

模型参数和显存需求:

模型参数使用2字节或者4字节进行存储;

如果每个模型参数使用2个字节进行存储,

10亿的模型参数,占用显存2GB;

如果冻结预加载的大模型参数,10亿参数的大模型占用显存2GB;

如果微调大模型的参数,10亿参数的模型至少需要显存16G;

对于LLaMA系列开源模型,2023/06发布的LLaMA 2,有不同版本的预训练模型,参数量分别是70亿/130/700亿;2024/04发布的Llama 3,参数量分别是80亿/700亿.

对于个人调试大模型参数,做如下估计:

如果采用微调大模型参数这种方案,以LLaMA的70亿参数为例,需要显存112G,基本不可能实现;

如果采用冻结预加载的大模型参数方案,以LLaMA的70亿参数为例,至少需要显存14G,同时需要设计网络架构,类似LLaMA-Reg:

3.大模型api调用

曾一度(至今),kimi AI助手十分火爆,kimi可以接受多种类型的文件作为输入,并根据提示词输出文件分析结果。通义千问也有类似的功能。如果待处理的文件数量较少,如十几个或者几十个,直接交互式处理足够了,然而,如果待处理的文件数量,如几百几千几万,甚至几十万几百万几亿等,借助交互式的LLM模型调用的调用方式就在操作层面不再可行,可以借助大模型提供的api接口,编程实现大量文件的处理。目前,kimi和QWen模型都支持模型api的调用,并且调用方式很简单,基于python很容易就能实现。类似kimi/QWen,会提供一定量的免费调用api的额度,如果需要处理的文件数量很多,达到几千几万,需要购买tokens,具体见相关网站介绍。在使用大模型工具时,需要注意模型参数的调整,提示词的编辑,关注到一定程度上大模型输出的随机性,尽可能规避随机性对处理结果的影响,尽可能保证处理结果的准确性。

相关推荐
火山引擎开发者社区22 分钟前
ByteBrain x 清华 VLDB25|时序多模态大语言模型 ChatTS
人工智能·语言模型·自然语言处理
SoaringPigeon25 分钟前
从深度学习的角度看自动驾驶
人工智能·深度学习·自动驾驶
产品经理独孤虾28 分钟前
如何利用AI大模型对已有创意进行评估,打造杀手级的广告创意
人工智能·大模型·aigc·产品经理·数字营销·智能营销·智能创意生成
MobotStone41 分钟前
无代码+AI时代,为什么你仍然需要像个开发者一样思考
人工智能·算法
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | LLM辅助软件开发:需求如何转化为代码?
论文阅读·人工智能·软件工程
whabc1001 小时前
和鲸社区深度学习基础训练营2025年关卡3_Q1(1)
人工智能·深度学习
勤奋的知更鸟1 小时前
标准化模型格式ONNX介绍:打通AI模型从训练到部署的环节
人工智能·语言模型
盼小辉丶2 小时前
Transoformer实战——Transformer模型性能评估
人工智能·深度学习·transformer
极限实验室2 小时前
Coco AI 实战(二):摄入MongoDB 数据
人工智能·mongodb
AIGC包拥它2 小时前
AI教学设计助手:生成好教案的Prompt技术实战(一)
人工智能·prompt