大语言模型Large Language Model(LLM)

目录

1.大模型的发展历程

2.算力需求

3.大模型api调用


1.大模型的发展历程

维基百科的介绍:https://en.wikipedia.org/wiki/Large_language_model

发展情况

大语言模型的模型参数量一般在数百亿或数千亿个参数,开源大模型主要有Facebook的LLaMA,阿里的通义千问,微软AI研究院Phi-3,谷歌的BERT(2018)等,

2.算力需求

模型参数和显存需求:

模型参数使用2字节或者4字节进行存储;

如果每个模型参数使用2个字节进行存储,

10亿的模型参数,占用显存2GB;

如果冻结预加载的大模型参数,10亿参数的大模型占用显存2GB;

如果微调大模型的参数,10亿参数的模型至少需要显存16G;

对于LLaMA系列开源模型,2023/06发布的LLaMA 2,有不同版本的预训练模型,参数量分别是70亿/130/700亿;2024/04发布的Llama 3,参数量分别是80亿/700亿.

对于个人调试大模型参数,做如下估计:

如果采用微调大模型参数这种方案,以LLaMA的70亿参数为例,需要显存112G,基本不可能实现;

如果采用冻结预加载的大模型参数方案,以LLaMA的70亿参数为例,至少需要显存14G,同时需要设计网络架构,类似LLaMA-Reg:

3.大模型api调用

曾一度(至今),kimi AI助手十分火爆,kimi可以接受多种类型的文件作为输入,并根据提示词输出文件分析结果。通义千问也有类似的功能。如果待处理的文件数量较少,如十几个或者几十个,直接交互式处理足够了,然而,如果待处理的文件数量,如几百几千几万,甚至几十万几百万几亿等,借助交互式的LLM模型调用的调用方式就在操作层面不再可行,可以借助大模型提供的api接口,编程实现大量文件的处理。目前,kimi和QWen模型都支持模型api的调用,并且调用方式很简单,基于python很容易就能实现。类似kimi/QWen,会提供一定量的免费调用api的额度,如果需要处理的文件数量很多,达到几千几万,需要购买tokens,具体见相关网站介绍。在使用大模型工具时,需要注意模型参数的调整,提示词的编辑,关注到一定程度上大模型输出的随机性,尽可能规避随机性对处理结果的影响,尽可能保证处理结果的准确性。

相关推荐
土星云SaturnCloud1 分钟前
液冷“内卷”:在局部优化与系统重构之间,寻找第三条路
服务器·人工智能·ai·计算机外设
智界前沿11 分钟前
集之互动AI创意视频解决方案:商业级可控,让品牌创意从“灵感”直达“落地”
人工智能·aigc
baby_hua12 分钟前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
brave and determined15 分钟前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
SelectDB16 分钟前
Apache Doris 4.0.2 版本正式发布
数据库·人工智能
Solar202520 分钟前
TOB企业智能获客新范式:基于数据驱动与AI的销售线索挖掘与孵化架构实践
人工智能·架构
天河归来22 分钟前
在本地windows电脑使用Docker搭建xinference环境
docker·语言模型·容器
AI营销实验室35 分钟前
原圈科技如何以多智能体赋能AI营销内容生产新范式
人工智能
视***间38 分钟前
智驱万物,视联未来 —— 视程空间以 AI 硬科技赋能全场景智能革新
人工智能·边缘计算·视程空间·ai算力开发板