大语言模型Large Language Model(LLM)

目录

1.大模型的发展历程

2.算力需求

3.大模型api调用


1.大模型的发展历程

维基百科的介绍:https://en.wikipedia.org/wiki/Large_language_model

发展情况

大语言模型的模型参数量一般在数百亿或数千亿个参数,开源大模型主要有Facebook的LLaMA,阿里的通义千问,微软AI研究院Phi-3,谷歌的BERT(2018)等,

2.算力需求

模型参数和显存需求:

模型参数使用2字节或者4字节进行存储;

如果每个模型参数使用2个字节进行存储,

10亿的模型参数,占用显存2GB;

如果冻结预加载的大模型参数,10亿参数的大模型占用显存2GB;

如果微调大模型的参数,10亿参数的模型至少需要显存16G;

对于LLaMA系列开源模型,2023/06发布的LLaMA 2,有不同版本的预训练模型,参数量分别是70亿/130/700亿;2024/04发布的Llama 3,参数量分别是80亿/700亿.

对于个人调试大模型参数,做如下估计:

如果采用微调大模型参数这种方案,以LLaMA的70亿参数为例,需要显存112G,基本不可能实现;

如果采用冻结预加载的大模型参数方案,以LLaMA的70亿参数为例,至少需要显存14G,同时需要设计网络架构,类似LLaMA-Reg:

3.大模型api调用

曾一度(至今),kimi AI助手十分火爆,kimi可以接受多种类型的文件作为输入,并根据提示词输出文件分析结果。通义千问也有类似的功能。如果待处理的文件数量较少,如十几个或者几十个,直接交互式处理足够了,然而,如果待处理的文件数量,如几百几千几万,甚至几十万几百万几亿等,借助交互式的LLM模型调用的调用方式就在操作层面不再可行,可以借助大模型提供的api接口,编程实现大量文件的处理。目前,kimi和QWen模型都支持模型api的调用,并且调用方式很简单,基于python很容易就能实现。类似kimi/QWen,会提供一定量的免费调用api的额度,如果需要处理的文件数量很多,达到几千几万,需要购买tokens,具体见相关网站介绍。在使用大模型工具时,需要注意模型参数的调整,提示词的编辑,关注到一定程度上大模型输出的随机性,尽可能规避随机性对处理结果的影响,尽可能保证处理结果的准确性。

相关推荐
hans汉斯3 分钟前
【计算机科学与应用】基于多光谱成像与边缘计算的物流安全风险预警模式及系统实现
大数据·数据库·人工智能·设计模式·机器人·边缘计算·论文笔记
aneasystone本尊3 分钟前
深入 Dify 的应用运行器之知识库检索(续)
人工智能
许泽宇的技术分享12 分钟前
Windows MCP.Net:解锁AI助手的Windows桌面自动化潜能
人工智能·windows·.net·mcp
从后端到QT18 分钟前
大语言模型本地部署之转录文本总结
人工智能·语言模型·自然语言处理
AI新兵22 分钟前
AI大事记13:GPT 与 BERT 的范式之争(上)
人工智能·gpt·bert
文火冰糖的硅基工坊22 分钟前
[人工智能-大模型-43]:模型层技术 - 强化学学习:学习的目标、收敛条件、评估依据、应用到的模型、应用场景 - 通俗易懂。
人工智能·学习
Fibocom广和通30 分钟前
禾赛科技与广和通战略合作,联合推出机器人解决方案加速具身智能商业化落地
人工智能
飞哥数智坊30 分钟前
Claude Skills 自定义实战:提炼会议纪要并推送企业微信
人工智能·claude·chatglm (智谱)
golang学习记36 分钟前
性能飙升4倍,苹果刚发布的M5给人看呆了
人工智能·后端
golang学习记38 分钟前
快手推出AI编程IDE:自主编程时代已来!
人工智能