Tensorflow2 如何扩展现有数据集(缩放、随机旋转、水平翻转、平移等),从而提高模型的准确率 -- Tensorflow自学笔记14

实际生活中的数据集,往往不是标准的数据,而是有倾斜角度、有旋转、有偏移的数据,为了提高数据集的真实性,提高模型预测的准确率,可以用ImageDataGenerator函数来扩展数据集

复制代码
import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

image_gen_train = ImageDataGenerator(

          rescale=1./255, #原像素值 0~255 归至 0~1 
          rotation_range=45, #随机 45 度旋转
          width_shift_range=.15, #随机宽度偏移 [-0.15,0.15)
          height_shift_range=.15,#随机高度偏移 [-0.15,0.15)
          horizontal_flip=True,#随机水平翻转
          zoom_range=0.5 #随机缩放到 [1-50%,1+50%]

MNIST数据集增强

复制代码
import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator



mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) # 数据增强函数的输入要求是 4 维,通过 reshape 调整,给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)



image_gen_train = ImageDataGenerator(

rescale=1. / 1., # 如为图像,分母为255时,可归至0~1

rotation_range=45, # 随机45度旋转

width_shift_range=.15, # 宽度偏移

height_shift_range=.15, # 高度偏移

horizontal_flip=False, # 水平翻转

zoom_range=0.5 # 将图像随机缩放阈量50%

)

image_gen_train.fit(x_train)



model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(10, activation='softmax')

])



model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),

metrics=['sparse_categorical_accuracy'])



model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),

validation_freq=1)

model.summary()

数据增强后,图片对比,发现,有的旋转了,有的放大了,有的旋转了。

相关推荐
Aaron1588几秒前
RFSOC+VU13P在无线信道模拟中的技术应用分析
数据结构·人工智能·算法·fpga开发·硬件架构·硬件工程·射频工程
czlczl200209252 分钟前
如何添加“默认给Sql查询语句加上租户条件”的功能
数据库·python·sql
破烂pan2 分钟前
Python 长连接实现方式全景解析
python·websocket·sse
高洁014 分钟前
一文了解图神经网络
人工智能·python·深度学习·机器学习·transformer
数据猿5 分钟前
【金猿CIO展】莱商银行信息科技部总经理张勇:AI Infra与Data Agent驱动金融数据价值新十年
人工智能·金融
verse_armour7 分钟前
【深度学习】Grand Challenge、zenodo、huggingface数据集下载
人工智能·深度学习·huggingface·zenodo·数据集下载
咸鱼加辣7 分钟前
按“最近是否用过”删(LRU)
python
古城小栈10 分钟前
工业互联网:Go + 边缘计算实现设备监控实战
人工智能·golang·边缘计算
极客BIM工作室11 分钟前
大模型参数高效微调:5种主流方法的技术解析
人工智能·机器学习
海边夕阳200614 分钟前
【每天一个AI小知识】:什么是扩散模型?
人工智能·经验分享·深度学习·机器学习·扩散模型