Tensorflow2 如何扩展现有数据集(缩放、随机旋转、水平翻转、平移等),从而提高模型的准确率 -- Tensorflow自学笔记14

实际生活中的数据集,往往不是标准的数据,而是有倾斜角度、有旋转、有偏移的数据,为了提高数据集的真实性,提高模型预测的准确率,可以用ImageDataGenerator函数来扩展数据集

复制代码
import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

image_gen_train = ImageDataGenerator(

          rescale=1./255, #原像素值 0~255 归至 0~1 
          rotation_range=45, #随机 45 度旋转
          width_shift_range=.15, #随机宽度偏移 [-0.15,0.15)
          height_shift_range=.15,#随机高度偏移 [-0.15,0.15)
          horizontal_flip=True,#随机水平翻转
          zoom_range=0.5 #随机缩放到 [1-50%,1+50%]

MNIST数据集增强

复制代码
import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator



mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) # 数据增强函数的输入要求是 4 维,通过 reshape 调整,给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)



image_gen_train = ImageDataGenerator(

rescale=1. / 1., # 如为图像,分母为255时,可归至0~1

rotation_range=45, # 随机45度旋转

width_shift_range=.15, # 宽度偏移

height_shift_range=.15, # 高度偏移

horizontal_flip=False, # 水平翻转

zoom_range=0.5 # 将图像随机缩放阈量50%

)

image_gen_train.fit(x_train)



model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(10, activation='softmax')

])



model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),

metrics=['sparse_categorical_accuracy'])



model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),

validation_freq=1)

model.summary()

数据增强后,图片对比,发现,有的旋转了,有的放大了,有的旋转了。

相关推荐
reddingtons1 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK1 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch2 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch2 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines2 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey2 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币3 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
费弗里3 小时前
Python全栈应用开发利器Dash 3.x新版本介绍(1)
python·dash
平和男人杨争争3 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道3 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别