线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录

  • [1. 距离矩阵](#1. 距离矩阵)
  • [2. 正交普鲁克问题](#2. 正交普鲁克问题)
  • [3. 实例说明](#3. 实例说明)

1. 距离矩阵

假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3,三个点距离如下:
∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x_1-x_2||^2=1,||x_2-x_3||^2=1,||x_1-x_3||^2=6 \end{equation} ∣∣x1−x2∣∣2=1,∣∣x2−x3∣∣2=1,∣∣x1−x3∣∣2=6

  • 根据上面的公式发现不满足三角不等式定理,两边之和大于第三边 1 + 1 ≤ 6 1+1\le6 1+1≤6
  • 根据三个点组成的距离矩阵Distance Matrix如下:
    D = [ 0 1 6 1 0 1 6 1 0 ] \begin{equation} D=\begin{bmatrix} 0&1&6\\\\ 1&0&1\\\\ 6&1&0 \end{bmatrix} \end{equation} D= 016101610
  • 假设我们有两个点 x 1 , x 2 x_1,x^2 x1,x2,那么 d i j d_{ij} dij的定义:
    D i j = ∣ ∣ x i − x j ∣ ∣ 2 = ( x i − x j ) T ( x i − x j ) = x i T x i − x i T x j − x j T x i + x j T x j \begin{equation} D_{ij}=||x_i-x_j||^2=(x_i-x_j)^T(x_i-x_j)=x_i^Tx_i-x_i^Tx_j-x_j^Tx_i+x_j^Tx_j \end{equation} Dij=∣∣xi−xj∣∣2=(xi−xj)T(xi−xj)=xiTxi−xiTxj−xjTxi+xjTxj
  • 由于对称性可得: x i T x j = x j T x i x_i^Tx_j=x_j^Tx_i xiTxj=xjTxi,故化简可得:
    D i j = x i T x i − 2 x i T x j + x j T x j \begin{equation} D_{ij}=x_i^Tx_i-2x_i^Tx_j+x_j^Tx_j \end{equation} Dij=xiTxi−2xiTxj+xjTxj
  • 为了方便计算,我们定义一个矩阵G表示如下:
    X = [ x i x j ] ; X T = [ x i T x j T ] → G = X T X = [ x i T x i x i T x j x j T x i x j T x j ] \begin{equation} X=\begin{bmatrix}x_i&x_j\end{bmatrix};X^T=\begin{bmatrix}x_i^T\\\\x_j^T\end{bmatrix}\to G=X^TX=\begin{bmatrix}x_i^Tx_i&x_i^Tx_j\\\\x_j^Tx_i&x_j^Tx_j\end{bmatrix} \end{equation} X=[xixj];XT= xiTxjT →G=XTX= xiTxixjTxixiTxjxjTxj
  • 由此我们可以用G来表示D如下:
    D i j = G i i − 2 G i j + G j j \begin{equation} D_{ij}=G_{ii}-2G_{ij}+G_{jj} \end{equation} Dij=Gii−2Gij+Gjj
  • 优势:为什么我们要这么费力的做?原因在于,我们求D矩阵的时候,我们需要不断的进行多重循环,效率非常低,如果我们这种方法,第一步通过点乘求得矩阵G,第二步只需要简单的抽取矩阵G中的元素,第三步就通过简单的加减乘除即可得到同样结果的距离矩阵D,结果是一样,但是此种算法大大减少了计算量,真是太神奇了!!!
  • 参考链接:
    斯坦福CS231N课程笔记(三)-距离矩阵的计算方法

2. 正交普鲁克问题

假设有两个矩阵A,B ,我们希望找到一个正交矩阵Q,使得 ∣ ∣ A Q − B ∣ ∣ F ||AQ-B||_F ∣∣AQ−B∣∣F最小?
min ⁡ ∣ ∣ A Q − B ∣ ∣ F ; s t : Q T Q = I \begin{equation} \min||AQ-B||_F;st:Q^TQ=I \end{equation} min∣∣AQ−B∣∣F;st:QTQ=I

  • 其中 A , B ∈ R m × n A,B\in R^{m\times n} A,B∈Rm×n,待求 Q ∈ R n × n Q\in R^{n\times n} Q∈Rn×n为正交矩阵

3. 实例说明

  • 假设我们有一个矩阵A,B表示如下,希望找到一个正交矩阵Q使得 ∣ ∣ A Q − B ∣ ∣ F ||AQ-B||_F ∣∣AQ−B∣∣F尽可能的小?
    A = [ 1 0 0 1 1 1 ] ; B = [ 0 − 1 1 0 1 − 1 ] ; \begin{equation} A=\begin{bmatrix} 1&0\\\\ 0&1\\\\ 1&1\end{bmatrix};B=\begin{bmatrix} 0&-1\\\\ 1&0\\\\ 1&-1\end{bmatrix}; \end{equation} A= 101011 ;B= 011−10−1 ;
  • 第一步: 求矩阵C
    C = A T B = [ 1 0 1 0 1 1 ] [ 0 − 1 1 0 1 − 1 ] = [ 1 − 2 2 − 1 ] ; \begin{equation} C=A^TB=\begin{bmatrix} 1&0&1\\\\ 0&1&1\end{bmatrix}\begin{bmatrix} 0&-1\\\\ 1&0\\\\ 1&-1\end{bmatrix}=\begin{bmatrix} 1&-2\\\\ 2&-1\end{bmatrix}; \end{equation} C=ATB= 100111 011−10−1 = 12−2−1 ;
  • 第二步:将矩阵C进行奇异值分解SVD:
    C = U Σ V T ; U = [ − 1 2 − 1 2 − 1 2 1 2 ] Σ = [ 3 0 0 1 ] ; V T = [ − 1 2 1 2 1 2 1 2 ] \begin{equation} C=U\Sigma V^T;U=\begin{bmatrix} -\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\\ -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \Sigma=\begin{bmatrix} 3&0\\\\ 0&1\end{bmatrix};V^T=\begin{bmatrix} -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \end{equation} C=UΣVT;U= −2 1−2 1−2 12 1 Σ= 3001 ;VT= −2 12 12 12 1
  • 第三步: 求出正交矩阵Q
    Q = U V T = [ − 1 2 − 1 2 − 1 2 1 2 ] [ − 1 2 1 2 1 2 1 2 ] = [ 0 − 1 1 0 ] \begin{equation} Q=UV^T=\begin{bmatrix} -\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\\ -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}= \begin{bmatrix} 0&-1\\\\ 1&0\end{bmatrix} \end{equation} Q=UVT= −2 1−2 1−2 12 1 −2 12 12 12 1 = 01−10
  • 第四步,验证 ∣ ∣ A Q − B ∣ ∣ ||AQ-B|| ∣∣AQ−B∣∣:
    ∣ ∣ A Q − B ∣ ∣ F = 0 \begin{equation} ||AQ-B||_F=0 \end{equation} ∣∣AQ−B∣∣F=0
  • 小结:这种方法还真能够找到正交矩阵Q.
相关推荐
MoRanzhi12031 小时前
亲和传播聚类算法应用(Affinity Propagation)
人工智能·python·机器学习·数学建模·scikit-learn·聚类
金融OG1 小时前
99.23 金融难点通俗解释:小卖部经营比喻PPI(生产者物价指数)vsCPI(消费者物价指数)
人工智能·python·机器学习·数学建模·金融·数据可视化
zxfeng~1 小时前
深度学习之“线性代数”
人工智能·python·深度学习·线性代数
iloveas20143 小时前
three.js+WebGL踩坑经验合集(6.2):负缩放,负定矩阵和行列式的关系(3D版本)
3d·矩阵·webgl
BlackPercy3 小时前
[paddle] 矩阵相关的指标
线性代数·矩阵·paddle
CodeClimb3 小时前
【华为OD-E卷 - 最大矩阵和 100分(python、java、c++、js、c)】
java·c++·python·华为od·矩阵
追求源于热爱!13 小时前
记5(一元逻辑回归+线性分类器+多元逻辑回归
算法·机器学习·逻辑回归
爱喝奶茶的企鹅14 小时前
构建一个研发助手Agent:提升开发效率的实践
机器学习
山晨啊815 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
BugNest19 小时前
计算机视觉和图像处理
图像处理·人工智能·机器学习·计算机视觉·ai