使用python批量计算栅格像元值(像元总值等)

1. 单个栅格像元数值计算

python 复制代码
import rasterio
from rasterio import plot
import numpy as np
from scipy.stats import mode

# 打开TIF文件
with rasterio.open('path.tiff') as src:
    # 读取栅格数据
    data = src.read(1)  # 只读取第一个band

    # 计算总像元值
    total_pixel_value = np.sum(data)

    # 计算最大值
    max_value = np.max(data)

    # 计算最小值
    min_value = np.min(data)

    # 计算平均值
    mean_value = np.mean(data)

    # 计算中位数
    median_value = np.median(data)

    # 计算众数
    mode_value, _ = mode(data, axis=None)

    # 计算均方根误差(RMSE)
    # 假设你有一个参考值或者你想使用所有像元的平方和的平均值来计算RMSE
    # 这里我们使用整个数据集的平方和的平均值来近似计算RMSE
    rmse = np.sqrt(np.mean(data**2))

    # 打印结果
    print(f"总像元值: {total_pixel_value}")
    print(f"最大值: {max_value}")
    print(f"最小值: {min_value}")
    print(f"平均值: {mean_value}")
    print(f"中位数: {median_value}")
    print(f"众数: {mode_value}")
    print(f"均方根误差 (RMSE): {rmse}")

2. 批量计算并写入csv

python 复制代码
import rasterio
from rasterio import plot
import numpy as np
from scipy.stats import mode
import os
import csv

# 指定要处理的TIF文件所在的目录
tif_directory = 'path_to_your_tif_directory'

# 指定输出CSV文件的路径
output_csv_file = 'output.csv'

# 定义要写入CSV文件的列名
column_names = ['Filename', 'Total Pixel Value', 'Max Value', 'Min Value', 'Mean Value', 'Median Value', 'Mode Value', 'RMSE']

# 打开CSV文件进行写入
with open(output_csv_file, mode='w', newline='', encoding='utf-8') as csv_file:
    writer = csv.writer(csv_file)

    # 写入列名
    writer.writerow(column_names)

    # 遍历TIF文件列表
    for tif_file in os.listdir(tif_directory):
        if tif_file.endswith('.tiff'):
            # 构建完整的文件路径
            file_path = os.path.join(tif_directory, tif_file)

            # 打开TIF文件
            with rasterio.open(file_path) as src:
                # 读取栅格数据
                data = src.read(1)  # 只读取第一个band

                # 计算总像元值
                total_pixel_value = np.sum(data)

                # 计算最大值
                max_value = np.max(data)

                # 计算最小值
                min_value = np.min(data)

                # 计算平均值
                mean_value = np.mean(data)

                # 计算中位数
                median_value = np.median(data)

                # 计算众数
                mode_value, _ = mode(data, axis=None)

                # 计算均方根误差(RMSE) 
                # 这里我们使用整个数据集的平方和的平均值来近似计算RMSE
                rmse = np.sqrt(np.mean(data**2))

                # 写入CSV文件
                writer.writerow([tif_file, total_pixel_value, max_value, min_value, mean_value, median_value, mode_value, rmse])

print(f"统计数据已写入 {output_csv_file}")

说明:在计算tif栅格像元值的时候需要注意tif的数值类型,整数还是浮点。

在计算6位数值时,python会自动转成8位byte,这会影响计算结果。


感谢阅读

相关推荐
quikai198120 分钟前
python练习第一组
开发语言·python
谷粒.29 分钟前
测试数据管理难题的7种破解方案
运维·开发语言·网络·人工智能·python
寒山李白1 小时前
关于Python版本与supervisor版本的兼容性
windows·python·supervisord
梨落秋霜1 小时前
Python入门篇【基础语法】
开发语言·python
ada7_1 小时前
LeetCode(python)——543.二叉树的直径
数据结构·python·算法·leetcode·职场和发展
小白学大数据2 小时前
Python 多线程爬取社交媒体品牌反馈数据
开发语言·python·媒体
HAPPY酷2 小时前
压缩文件格式实战速查表 (纯文本版)
python
祝余Eleanor2 小时前
Day 31 类的定义和方法
开发语言·人工智能·python·机器学习
背心2块钱包邮2 小时前
第6节——微积分基本定理(Fundamental Theorem of Calculus,FTC)
人工智能·python·机器学习·matplotlib
larance2 小时前
修改jupyterlab 默认路径
python