使用python批量计算栅格像元值(像元总值等)

1. 单个栅格像元数值计算

python 复制代码
import rasterio
from rasterio import plot
import numpy as np
from scipy.stats import mode

# 打开TIF文件
with rasterio.open('path.tiff') as src:
    # 读取栅格数据
    data = src.read(1)  # 只读取第一个band

    # 计算总像元值
    total_pixel_value = np.sum(data)

    # 计算最大值
    max_value = np.max(data)

    # 计算最小值
    min_value = np.min(data)

    # 计算平均值
    mean_value = np.mean(data)

    # 计算中位数
    median_value = np.median(data)

    # 计算众数
    mode_value, _ = mode(data, axis=None)

    # 计算均方根误差(RMSE)
    # 假设你有一个参考值或者你想使用所有像元的平方和的平均值来计算RMSE
    # 这里我们使用整个数据集的平方和的平均值来近似计算RMSE
    rmse = np.sqrt(np.mean(data**2))

    # 打印结果
    print(f"总像元值: {total_pixel_value}")
    print(f"最大值: {max_value}")
    print(f"最小值: {min_value}")
    print(f"平均值: {mean_value}")
    print(f"中位数: {median_value}")
    print(f"众数: {mode_value}")
    print(f"均方根误差 (RMSE): {rmse}")

2. 批量计算并写入csv

python 复制代码
import rasterio
from rasterio import plot
import numpy as np
from scipy.stats import mode
import os
import csv

# 指定要处理的TIF文件所在的目录
tif_directory = 'path_to_your_tif_directory'

# 指定输出CSV文件的路径
output_csv_file = 'output.csv'

# 定义要写入CSV文件的列名
column_names = ['Filename', 'Total Pixel Value', 'Max Value', 'Min Value', 'Mean Value', 'Median Value', 'Mode Value', 'RMSE']

# 打开CSV文件进行写入
with open(output_csv_file, mode='w', newline='', encoding='utf-8') as csv_file:
    writer = csv.writer(csv_file)

    # 写入列名
    writer.writerow(column_names)

    # 遍历TIF文件列表
    for tif_file in os.listdir(tif_directory):
        if tif_file.endswith('.tiff'):
            # 构建完整的文件路径
            file_path = os.path.join(tif_directory, tif_file)

            # 打开TIF文件
            with rasterio.open(file_path) as src:
                # 读取栅格数据
                data = src.read(1)  # 只读取第一个band

                # 计算总像元值
                total_pixel_value = np.sum(data)

                # 计算最大值
                max_value = np.max(data)

                # 计算最小值
                min_value = np.min(data)

                # 计算平均值
                mean_value = np.mean(data)

                # 计算中位数
                median_value = np.median(data)

                # 计算众数
                mode_value, _ = mode(data, axis=None)

                # 计算均方根误差(RMSE) 
                # 这里我们使用整个数据集的平方和的平均值来近似计算RMSE
                rmse = np.sqrt(np.mean(data**2))

                # 写入CSV文件
                writer.writerow([tif_file, total_pixel_value, max_value, min_value, mean_value, median_value, mode_value, rmse])

print(f"统计数据已写入 {output_csv_file}")

说明:在计算tif栅格像元值的时候需要注意tif的数值类型,整数还是浮点。

在计算6位数值时,python会自动转成8位byte,这会影响计算结果。


感谢阅读

相关推荐
深度学习lover40 分钟前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者2 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
bryant_meng7 小时前
【python】Distribution
开发语言·python·分布函数·常用分布
m0_594526308 小时前
Python批量合并多个PDF
java·python·pdf
工业互联网专业9 小时前
Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
vue.js·hadoop·python·flask·毕业设计·源码·课程设计
钱钱钱端9 小时前
【压力测试】如何确定系统最大并发用户数?
自动化测试·软件测试·python·职场和发展·压力测试·postman
慕卿扬9 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
Json____9 小时前
python的安装环境Miniconda(Conda 命令管理依赖配置)
开发语言·python·conda·miniconda