使用python批量计算栅格像元值(像元总值等)

1. 单个栅格像元数值计算

python 复制代码
import rasterio
from rasterio import plot
import numpy as np
from scipy.stats import mode

# 打开TIF文件
with rasterio.open('path.tiff') as src:
    # 读取栅格数据
    data = src.read(1)  # 只读取第一个band

    # 计算总像元值
    total_pixel_value = np.sum(data)

    # 计算最大值
    max_value = np.max(data)

    # 计算最小值
    min_value = np.min(data)

    # 计算平均值
    mean_value = np.mean(data)

    # 计算中位数
    median_value = np.median(data)

    # 计算众数
    mode_value, _ = mode(data, axis=None)

    # 计算均方根误差(RMSE)
    # 假设你有一个参考值或者你想使用所有像元的平方和的平均值来计算RMSE
    # 这里我们使用整个数据集的平方和的平均值来近似计算RMSE
    rmse = np.sqrt(np.mean(data**2))

    # 打印结果
    print(f"总像元值: {total_pixel_value}")
    print(f"最大值: {max_value}")
    print(f"最小值: {min_value}")
    print(f"平均值: {mean_value}")
    print(f"中位数: {median_value}")
    print(f"众数: {mode_value}")
    print(f"均方根误差 (RMSE): {rmse}")

2. 批量计算并写入csv

python 复制代码
import rasterio
from rasterio import plot
import numpy as np
from scipy.stats import mode
import os
import csv

# 指定要处理的TIF文件所在的目录
tif_directory = 'path_to_your_tif_directory'

# 指定输出CSV文件的路径
output_csv_file = 'output.csv'

# 定义要写入CSV文件的列名
column_names = ['Filename', 'Total Pixel Value', 'Max Value', 'Min Value', 'Mean Value', 'Median Value', 'Mode Value', 'RMSE']

# 打开CSV文件进行写入
with open(output_csv_file, mode='w', newline='', encoding='utf-8') as csv_file:
    writer = csv.writer(csv_file)

    # 写入列名
    writer.writerow(column_names)

    # 遍历TIF文件列表
    for tif_file in os.listdir(tif_directory):
        if tif_file.endswith('.tiff'):
            # 构建完整的文件路径
            file_path = os.path.join(tif_directory, tif_file)

            # 打开TIF文件
            with rasterio.open(file_path) as src:
                # 读取栅格数据
                data = src.read(1)  # 只读取第一个band

                # 计算总像元值
                total_pixel_value = np.sum(data)

                # 计算最大值
                max_value = np.max(data)

                # 计算最小值
                min_value = np.min(data)

                # 计算平均值
                mean_value = np.mean(data)

                # 计算中位数
                median_value = np.median(data)

                # 计算众数
                mode_value, _ = mode(data, axis=None)

                # 计算均方根误差(RMSE) 
                # 这里我们使用整个数据集的平方和的平均值来近似计算RMSE
                rmse = np.sqrt(np.mean(data**2))

                # 写入CSV文件
                writer.writerow([tif_file, total_pixel_value, max_value, min_value, mean_value, median_value, mode_value, rmse])

print(f"统计数据已写入 {output_csv_file}")

说明:在计算tif栅格像元值的时候需要注意tif的数值类型,整数还是浮点。

在计算6位数值时,python会自动转成8位byte,这会影响计算结果。


感谢阅读

相关推荐
Remember_99318 小时前
Java 入门指南:从零开始掌握核心语法与编程思想
java·c语言·开发语言·ide·python·leetcode·eclipse
sheji341618 小时前
【开题答辩全过程】以 基于Python的街区医院管理系统的设计与实现为例,包含答辩的问题和答案
开发语言·python
UR的出不克18 小时前
基于Django的智能职位推荐系统设计与实现:从数据爬取到协同过滤推荐
运维·爬虫·python·数据分析·自动化
我是一只小青蛙88818 小时前
快速找回AnacondaPrompt的3种方法
python
Blossom.11818 小时前
实时知识增强大模型:基于Flink的流式向量索引与动态RAG系统
大数据·运维·人工智能·python·flink·prompt·知识图谱
JicasdC123asd18 小时前
基于YOLOv10n-MambaOut的行李箱检测与识别系统_深度学习_Python_源码_详解
python·深度学习·yolo
qwerasda12385219 小时前
基于Faster-RCNN_R50_Caffe_FPN_1x_COCO的绿豆计数与识别系统深度学习Python代码实现
python·深度学习·caffe
程序员:钧念1 天前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路1 天前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
hele_two1 天前
快速幂算法
c++·python·算法