pytorch torch.norm函数介绍

torch.norm 函数用于计算张量的范数(norm),可以理解为张量的"长度"或"大小"。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算 向量矩阵 的多种范数,如 L1范数L2范数无穷范数 等。

1. 函数签名

复制代码
torch.norm(input, p='fro', dim=None, keepdim=False, dtype=None, out=None)
  • input: 需要计算范数的输入张量。

  • p: 范数的类型,常用值包括:

    • 'fro' (默认值):Frobenius 范数(矩阵的元素平方和开平方,类似于 L2 范数)。
    • p=1:L1 范数,元素的绝对值和。
    • p=2:L2 范数,元素的平方和的平方根(也称为欧几里得范数)。
    • p=float('inf'):无穷范数,张量元素的最大绝对值。
    • 其他 p 值可以表示不同的 p-范数(如 p=3 表示元素的三次方和的开三次方根)。
  • dim: 计算范数的维度。如果不指定维度,默认计算整个张量的范数。可以指定一个或多个维度。

  • keepdim: 是否保持计算后的张量的维度。

  • dtype: 可选,指定输出张量的数据类型。

  • out: 可选,用于存储输出的张量。

2. 范数类型的解释

3. 示例

计算向量的 L2 范数
复制代码
import torch

a = torch.tensor([3.0, 4.0])

# 计算 L2 范数 (默认 p=2)
l2_norm = torch.norm(a)
print(f"L2 范数: {l2_norm.item()}")
计算 L1 范数
复制代码
# 计算 L1 范数
l1_norm = torch.norm(a, p=1)
print(f"L1 范数: {l1_norm.item()}")
计算无穷范数
复制代码
# 计算无穷范数
inf_norm = torch.norm(a, p=float('inf'))
print(f"无穷范数: {inf_norm.item()}")
计算矩阵的 Frobenius 范数
复制代码
b = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算 Frobenius 范数
fro_norm = torch.norm(b, p='fro')
print(f"Frobenius 范数: {fro_norm.item()}")
指定维度计算范数
复制代码
# 计算矩阵每一行的 L2 范数
row_norms = torch.norm(b, p=2, dim=1)
print(f"每行的 L2 范数: {row_norms}")

4. 应用场景

  • L1 范数:用于稀疏性约束或正则化(Lasso 回归等)。
  • L2 范数:广泛用于优化问题、深度学习中的权重正则化、距离测量等。
  • 无穷范数:用于估计最大值(如误差上界的评估)。
  • Frobenius 范数:通常用于矩阵运算中,衡量矩阵的整体大小。

通过 torch.norm 函数,可以灵活选择不同的范数类型和维度,满足各种计算需求。

相关推荐
吴佳浩1 小时前
Langchain 浅出
python·langchain·llm
smj2302_796826521 小时前
解决leetcode第3753题范围内总波动值II
python·算法·leetcode
lumi.1 小时前
Vue + Element Plus 实现AI文档解析与问答功能(含详细注释+核心逻辑解析)
前端·javascript·vue.js·人工智能
mortimer1 小时前
破局视频翻译【最后一公里】––从语音克隆到口型对齐的完整工程思路
python·github·aigc
m0_650108242 小时前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹3 小时前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
门框研究员4 小时前
解锁Python的强大能力:深入理解描述符
python
AKAMAI4 小时前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽5 小时前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
子不语1805 小时前
Python——函数
开发语言·python