pytorch torch.norm函数介绍

torch.norm 函数用于计算张量的范数(norm),可以理解为张量的"长度"或"大小"。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算 向量矩阵 的多种范数,如 L1范数L2范数无穷范数 等。

1. 函数签名

复制代码
torch.norm(input, p='fro', dim=None, keepdim=False, dtype=None, out=None)
  • input: 需要计算范数的输入张量。

  • p: 范数的类型,常用值包括:

    • 'fro' (默认值):Frobenius 范数(矩阵的元素平方和开平方,类似于 L2 范数)。
    • p=1:L1 范数,元素的绝对值和。
    • p=2:L2 范数,元素的平方和的平方根(也称为欧几里得范数)。
    • p=float('inf'):无穷范数,张量元素的最大绝对值。
    • 其他 p 值可以表示不同的 p-范数(如 p=3 表示元素的三次方和的开三次方根)。
  • dim: 计算范数的维度。如果不指定维度,默认计算整个张量的范数。可以指定一个或多个维度。

  • keepdim: 是否保持计算后的张量的维度。

  • dtype: 可选,指定输出张量的数据类型。

  • out: 可选,用于存储输出的张量。

2. 范数类型的解释

3. 示例

计算向量的 L2 范数
复制代码
import torch

a = torch.tensor([3.0, 4.0])

# 计算 L2 范数 (默认 p=2)
l2_norm = torch.norm(a)
print(f"L2 范数: {l2_norm.item()}")
计算 L1 范数
复制代码
# 计算 L1 范数
l1_norm = torch.norm(a, p=1)
print(f"L1 范数: {l1_norm.item()}")
计算无穷范数
复制代码
# 计算无穷范数
inf_norm = torch.norm(a, p=float('inf'))
print(f"无穷范数: {inf_norm.item()}")
计算矩阵的 Frobenius 范数
复制代码
b = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算 Frobenius 范数
fro_norm = torch.norm(b, p='fro')
print(f"Frobenius 范数: {fro_norm.item()}")
指定维度计算范数
复制代码
# 计算矩阵每一行的 L2 范数
row_norms = torch.norm(b, p=2, dim=1)
print(f"每行的 L2 范数: {row_norms}")

4. 应用场景

  • L1 范数:用于稀疏性约束或正则化(Lasso 回归等)。
  • L2 范数:广泛用于优化问题、深度学习中的权重正则化、距离测量等。
  • 无穷范数:用于估计最大值(如误差上界的评估)。
  • Frobenius 范数:通常用于矩阵运算中,衡量矩阵的整体大小。

通过 torch.norm 函数,可以灵活选择不同的范数类型和维度,满足各种计算需求。

相关推荐
Swizard1 天前
别再迷信“准确率”了!一文读懂 AI 图像分割的黄金标尺 —— Dice 系数
python·算法·训练
超级大只老咪1 天前
数组的正向存储VS反向存储(Java)
java·开发语言·python
Honmaple1 天前
Spring AI 2.x 发布:全面拥抱 Java 21,Redis 史诗级增强
java·人工智能·spring
古城小栈1 天前
区块链 + AI:医疗诊断模型存证上链技术实践与探索
人工智能·区块链
丹宇码农1 天前
Index-TTS2 从零到一:完整安装与核心使用教程
人工智能·ai·tts
长安牧笛1 天前
心理健康情绪日记分析系统,用户输入文字日记后,AI提取情绪关键词,焦虑/愉悦等,生成周情绪波动曲线,并推荐调节建议。
python
AKAMAI1 天前
Akamai Cloud客户案例 | IPPRA的简洁、经济、易用的云计算服务
人工智能·云计算
艾上编程1 天前
第三章——爬虫工具场景之Python爬虫实战:学术文献摘要爬取,助力科研高效进行
开发语言·爬虫·python
Hi_kenyon1 天前
FastAPI+VUE3创建一个项目的步骤模板(二)
python·fastapi
Exploring1 天前
从零搭建使用 Open-AutoGML 搜索附近的美食
android·人工智能