pytorch torch.norm函数介绍

torch.norm 函数用于计算张量的范数(norm),可以理解为张量的"长度"或"大小"。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算 向量矩阵 的多种范数,如 L1范数L2范数无穷范数 等。

1. 函数签名

复制代码
torch.norm(input, p='fro', dim=None, keepdim=False, dtype=None, out=None)
  • input: 需要计算范数的输入张量。

  • p: 范数的类型,常用值包括:

    • 'fro' (默认值):Frobenius 范数(矩阵的元素平方和开平方,类似于 L2 范数)。
    • p=1:L1 范数,元素的绝对值和。
    • p=2:L2 范数,元素的平方和的平方根(也称为欧几里得范数)。
    • p=float('inf'):无穷范数,张量元素的最大绝对值。
    • 其他 p 值可以表示不同的 p-范数(如 p=3 表示元素的三次方和的开三次方根)。
  • dim: 计算范数的维度。如果不指定维度,默认计算整个张量的范数。可以指定一个或多个维度。

  • keepdim: 是否保持计算后的张量的维度。

  • dtype: 可选,指定输出张量的数据类型。

  • out: 可选,用于存储输出的张量。

2. 范数类型的解释

3. 示例

计算向量的 L2 范数
复制代码
import torch

a = torch.tensor([3.0, 4.0])

# 计算 L2 范数 (默认 p=2)
l2_norm = torch.norm(a)
print(f"L2 范数: {l2_norm.item()}")
计算 L1 范数
复制代码
# 计算 L1 范数
l1_norm = torch.norm(a, p=1)
print(f"L1 范数: {l1_norm.item()}")
计算无穷范数
复制代码
# 计算无穷范数
inf_norm = torch.norm(a, p=float('inf'))
print(f"无穷范数: {inf_norm.item()}")
计算矩阵的 Frobenius 范数
复制代码
b = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算 Frobenius 范数
fro_norm = torch.norm(b, p='fro')
print(f"Frobenius 范数: {fro_norm.item()}")
指定维度计算范数
复制代码
# 计算矩阵每一行的 L2 范数
row_norms = torch.norm(b, p=2, dim=1)
print(f"每行的 L2 范数: {row_norms}")

4. 应用场景

  • L1 范数:用于稀疏性约束或正则化(Lasso 回归等)。
  • L2 范数:广泛用于优化问题、深度学习中的权重正则化、距离测量等。
  • 无穷范数:用于估计最大值(如误差上界的评估)。
  • Frobenius 范数:通常用于矩阵运算中,衡量矩阵的整体大小。

通过 torch.norm 函数,可以灵活选择不同的范数类型和维度,满足各种计算需求。

相关推荐
Baihai IDP3 分钟前
对 GPT 5 模型路由机制的深度解析
人工智能·gpt·ai·大模型·llms
七宝大爷6 分钟前
从 “你好 Siri” 到 “你好 GPT”:语言模型如何改变对话?
人工智能·gpt·语言模型
IT北辰17 分钟前
用 Python 实现连续数据分组求和并回写
开发语言·python
jghhh0128 分钟前
使用cvx工具箱求解svm的原问题及其对偶问题
人工智能·机器学习·支持向量机
小白学大数据32 分钟前
从携程爬取的杭州酒店数据中提取价格、评分与评论的关键信息
爬虫·python·性能优化
低音钢琴34 分钟前
【人工智能系列:走近人工智能05】基于 PyTorch 的机器学习开发与部署实战
人工智能·pytorch·机器学习
企鹅侠客40 分钟前
用AI写了一个文档拼音标注工具 中文+拼音一键生成
人工智能·文档拼音标注
da_vinci_x1 小时前
在Substance Designer里“预演”你的游戏着色器(Shader)
人工智能·游戏·技术美术·着色器·游戏策划·游戏美术·substance designer
IT学长编程1 小时前
计算机毕业设计 基于Python的热门游戏推荐系统的设计与实现 Django 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·python·django·毕业设计·课程设计·毕业论文
熊猫_豆豆1 小时前
YOLO python 实现多种物体识别(时钟,水杯,小熊,路人,车辆)
人工智能·yolo·物品识别