【PyTorch】深入解析 `with torch.no_grad():` 的高效用法


🎬 鸽芷咕个人主页
🔥 个人专栏 : 《C++干货基地》《粉丝福利》

⛺️生活的理想,就是为了理想的生活!


文章目录

    • 引言
    • [一、`with torch.no_grad():` 的作用](#一、with torch.no_grad(): 的作用)
    • [二、`with torch.no_grad():` 的原理](#二、with torch.no_grad(): 的原理)
    • [三、`with torch.no_grad():` 的高效用法](#三、with torch.no_grad(): 的高效用法)
      • [3.1 模型评估](#3.1 模型评估)
      • [3.2 模型推理](#3.2 模型推理)
      • [3.3 模型保存和加载](#3.3 模型保存和加载)
    • 四、总结

引言

在深度学习训练中,我们经常需要评估模型的性能,或者对模型进行推理。这些操作通常不需要计算梯度,而计算梯度会带来额外的内存和计算开销。那么,如何在PyTorch中避免不必要的梯度计算,同时又能保持代码的简洁和高效呢?

  • 答案就是使用with torch.no_grad():。接下来,我们将详细探讨这个上下文管理器的工作原理和高效用法。

一、with torch.no_grad(): 的作用

with torch.no_grad(): 的主要作用是在指定的代码块中暂时禁用梯度计算。这在以下两种情况下特别有用:

  1. 模型评估:在训练过程中,我们经常需要评估模型的准确率、损失等指标。这些操作不需要梯度信息,因此可以禁用梯度计算以节省资源。
  2. 模型推理:在模型部署到生产环境进行推理时,我们不需要计算梯度,只关心模型的输出。

二、with torch.no_grad(): 的原理

在PyTorch中,每次调用backward()函数时,框架会计算所有requires_grad为True的Tensor的梯度。with torch.no_grad(): 通过将Tensor的requires_grad属性设置为False,来阻止梯度计算。当退出这个上下文管理器时,requires_grad属性会恢复到原来的状态。

三、with torch.no_grad(): 的高效用法

下面,我们将通过几个例子来展示with torch.no_grad():的高效用法。

3.1 模型评估

在模型训练过程中,我们通常会在每个epoch结束后评估模型的性能。以下是如何使用with torch.no_grad():来评估模型的一个例子:

python 复制代码
model.eval()  # 将模型设置为评估模式
with torch.no_grad():  # 禁用梯度计算
    correct = 0
    total = 0
    for data in test_loader:
        images, labels = data
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the test images: {100 * correct / total}%')

3.2 模型推理

在模型推理时,我们同样可以使用with torch.no_grad():来提高效率:

python 复制代码
model.eval()  # 将模型设置为评估模式
with torch.no_grad():  # 禁用梯度计算
    input_tensor = torch.randn(1, 3, 224, 224)  # 假设输入张量
    output = model(input_tensor)
    print(output)

3.3 模型保存和加载

在保存和加载模型时,我们也可以使用with torch.no_grad():来避免不必要的梯度计算:

python 复制代码
torch.save(model.state_dict(), 'model.pth')
with torch.no_grad():  # 禁用梯度计算
    model = TheModelClass(*args, **kwargs)
    model.load_state_dict(torch.load('model.pth'))

四、总结

with torch.no_grad(): 是PyTorch中一个非常有用的上下文管理器,它可以帮助我们在不需要梯度计算的情况下节省内存和计算资源。通过在模型评估、推理以及保存加载模型时使用它,我们可以提高代码的效率和性能。掌握with torch.no_grad():的正确用法,对于每个PyTorch开发者来说都是非常重要的。

相关推荐
whitelbwwww11 分钟前
Python图像处理入门指南--opencv
人工智能·opencv·计算机视觉
Peter114671785019 分钟前
华中科技大学研究生课程《数字图像处理I》期末考试(2025-回忆版/电子信息与通信学院)
图像处理·人工智能·计算机视觉
测试199826 分钟前
接口自动化测试套件封装示例详解
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·接口测试
颜颜yan_28 分钟前
在openEuler上搞个云原生AI模型商店:像点外卖一样部署模型
人工智能·云原生
lomocode40 分钟前
Dify 自建部署完全指南:从上手到放弃到真香
人工智能
aaaa_a1331 小时前
李宏毅——self-attention Transformer
人工智能·深度学习·transformer
工会代表2 小时前
使用 GitHub Actions 与 Docker 实现 CaptchaVision API 持续集成
python
Coovally AI模型快速验证2 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang2 小时前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian2 小时前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python