【Tools】大模型中的自注意力机制


摇来摇去摇碎点点的金黄

伸手牵来一片梦的霞光

南方的小巷推开多情的门窗

年轻和我们歌唱

摇来摇去摇着温柔的阳光

轻轻托起一件梦的衣裳

古老的都市每天都改变模样

🎵 方芳《摇太阳》


自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,并根据相似性来决定每个元素对整个序列的注意力权重。

在自注意力机制中,输入序列被分为三个不同的向量:查询(query)、键(key)和值(value)。通过计算查询与键之间的相似性,可以得到查询对键的注意力分数。然后,将这些注意力分数与值进行加权求和,得到对各个值的加权表示,即通过自注意力机制得到的输出。具体来说,自注意力机制的计算过程如下:

  1. 首先,为了计算查询与键之间的相似性,可以使用点积(dot product)、缩放点积(scaled dot product)或者双线性(bilinear)函数。

  2. 然后,将查询与键之间的相似性通过softmax函数进行归一化,得到查询对键的注意力分布。

  3. 最后,将注意力分布与值进行加权求和,得到对各个值的加权表示作为自注意力机制的输出。

自注意力机制的优点在于它能够在计算每个元素的注意力权重时同时考虑到与其他元素的关系,而不是仅仅依赖于位置信息。这种全局的注意力机制使得模型能够更好地捕捉到输入序列中各个元素之间的长距离依赖关系,帮助提升模型的表达能力。因此,自注意力机制在自然语言处理任务中,如机器翻译和文本生成等,取得了很好的效果。

相关推荐
AI即插即用28 分钟前
即插即用系列 | ECCV 2024 WTConv:利用小波变换实现超大感受野的卷积神经网络
图像处理·人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测
愚公搬代码1 小时前
【愚公系列】《扣子开发 AI Agent 智能体应用》003-扣子 AI 应用开发平台介绍(选择扣子的理由)
人工智能
lhrimperial1 小时前
AI工程化实践指南:从入门到落地
人工智能
jifengzhiling2 小时前
零极点对消:原理、作用与风险
人工智能·算法
科技看点2 小时前
想帮帮服务智能体荣获2025 EDGE AWARDS「最佳AI创新应用」大奖
人工智能
m0_704887892 小时前
DAY 40
人工智能·深度学习
Katecat996632 小时前
【海滩垃圾检测与分类识别-基于改进YOLO13-seg-iRMB模型】
人工智能·数据挖掘
程序员佳佳2 小时前
2025年大模型终极横评:GPT-5.2、Banana Pro与DeepSeek V3.2实战硬核比拼(附统一接入方案)
服务器·数据库·人工智能·python·gpt·api
鲨莎分不晴2 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习