【Tools】大模型中的自注意力机制


摇来摇去摇碎点点的金黄

伸手牵来一片梦的霞光

南方的小巷推开多情的门窗

年轻和我们歌唱

摇来摇去摇着温柔的阳光

轻轻托起一件梦的衣裳

古老的都市每天都改变模样

🎵 方芳《摇太阳》


自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,并根据相似性来决定每个元素对整个序列的注意力权重。

在自注意力机制中,输入序列被分为三个不同的向量:查询(query)、键(key)和值(value)。通过计算查询与键之间的相似性,可以得到查询对键的注意力分数。然后,将这些注意力分数与值进行加权求和,得到对各个值的加权表示,即通过自注意力机制得到的输出。具体来说,自注意力机制的计算过程如下:

  1. 首先,为了计算查询与键之间的相似性,可以使用点积(dot product)、缩放点积(scaled dot product)或者双线性(bilinear)函数。

  2. 然后,将查询与键之间的相似性通过softmax函数进行归一化,得到查询对键的注意力分布。

  3. 最后,将注意力分布与值进行加权求和,得到对各个值的加权表示作为自注意力机制的输出。

自注意力机制的优点在于它能够在计算每个元素的注意力权重时同时考虑到与其他元素的关系,而不是仅仅依赖于位置信息。这种全局的注意力机制使得模型能够更好地捕捉到输入序列中各个元素之间的长距离依赖关系,帮助提升模型的表达能力。因此,自注意力机制在自然语言处理任务中,如机器翻译和文本生成等,取得了很好的效果。

相关推荐
深圳佛手1 分钟前
未来已来,首款AI手机“豆包手机”问世
人工智能·智能手机
力学与人工智能2 分钟前
博士学位答辩PPT分享 | 基于机器学习的复杂流场预测方法研究
人工智能·机器学习·西北工业大学·航空航天·答辩·博士学位·ppt分享
视觉震撼2 分钟前
为大型语言模型(LLM)自动化知识图谱流水线:2026年手册
人工智能·算法·机器学习
Hi202402174 分钟前
使用星图AI算力平台训练PETRV2-BEV模型
人工智能·自动驾驶·gpu·机器视觉·bev·算力平台
Li emily5 分钟前
如何获取免费加密货币历史数据和实时行情接口
人工智能·api·美股
中科天工6 分钟前
解锁效率革命:智能包装的工业4.0实践
大数据·人工智能·智能
明明如月学长12 分钟前
别再神话 Claude Skills 了:这 12 个“致命”局限性你必须知道
人工智能
aigcapi14 分钟前
GPT API 哪家好?2026 企业级优选,4SAPI(星链引擎)凭四大核心优势领跑
大数据·人工智能·gpt
围炉聊科技14 分钟前
GLM-Image:国产芯片训练的混合架构图像生成模型解析
人工智能
老吴学AI18 分钟前
系列报告十三:(MTB)Physical AI: Shaping the Market of the New Possible — 2025 Report
大数据·人工智能·具身智能·vc·投融资