【Leetcode152】乘积最大子数组(动态规划)

文章目录

一、题目

二、思路

(0)读懂题意:题目的"连续"是指位置的连续,而不是说数字的连续,这是个大坑。

(1)确定状态:定义两个状态来记录当前子数组的最大乘积、最小乘积。因为在处理负数时,最小乘积乘以负数可能变为最大乘积。dp_max[i]表示以nums[i]结尾的子数组的最大乘积、dp_min[i]表示以nums[i]结尾的子数组的最小乘积。

(2)状态转移方程:对于每个元素nums[i],我们的dp_max[i]dp_min[i]可以从这三个数中确定:

  • 只包含当前元素 nums[i]
  • 当前元素与之前的最大乘积子数组乘积,即 dp_max[i-1] * nums[i]
  • 当前元素与之前的最小乘积子数组乘积,即 dp_min[i-1] * nums[i]

即状态转移方程可表示为:

python 复制代码
dp_max[i] = max(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i])
dp_min[i] = min(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i])

(3)初始状态+边界条件:以第一个元素结尾的子数组最大乘积就是它本身、以第一个元素结尾的子数组最小乘积就是它本身、初始乘积最大结果为第一个元素。

(4)遍历顺序:从左到右遍历数组。

三、代码

(方法一)按照思路的代码如下,时间复杂度为O(n),空间复杂度为O(n)。

python 复制代码
class Solution(object):
    def maxProduct(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums) == 0:
            return 0
        if len(nums) == 1:
            return nums[0]
        # 初始化数组
        n = len(nums)
        dp_max = [0] * n 
        dp_min = [0] * n
        # 初始状态
        dp_max[0] = nums[0]
        dp_min[0] = nums[0]
        cheng_ans = nums[0]
        # 从第二个元素开始遍历
        for i in range(1, n):
            num = nums[i]
            dp_max[i] = max(num, dp_max[i-1]*num, dp_min[i-1]*num)
            dp_min[i] = min(num, dp_max[i-1]*num, dp_min[i-1]*num)
            cheng_ans = max(cheng_ans, dp_max[i])
        return cheng_ans

(方法二)为了优化空间复杂度,发现每次当前只利用前一次状态,所以dp_maxdp_min没必要单独用两个数组记录所有的状态。但注意在计算状态转移方程时,分别计算dp_max和dp_min都会用到上一次的dp_max和dp_min,这为了用错dp_mxn,可以直接对num确保是正数后,交换dp_max和dp_min的位置,减少max和min函数的入参个数。

python 复制代码
class Solution(object):
    def maxProduct(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums) == 0:
            return 0
        if len(nums) == 1:
            return nums[0]
        # 初始化数组
        n = len(nums)
        # 初始状态
        dp_max = nums[0]
        dp_min = nums[0]
        cheng_ans = nums[0]
        # 从第二个元素开始遍历
        for i in range(1, n):
            num = nums[i]
            if num < 0:
                dp_max, dp_min = dp_min, dp_max
            dp_max = max(num, dp_max*num)
            dp_min = min(num, dp_min*num)
            cheng_ans = max(cheng_ans, dp_max)
        return cheng_ans
相关推荐
YuTaoShao42 分钟前
【LeetCode 热题 100】56. 合并区间——排序+遍历
java·算法·leetcode·职场和发展
二进制person5 小时前
Java SE--方法的使用
java·开发语言·算法
OneQ6665 小时前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way5 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战8 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689768 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju9 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手9 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理
ysa0510309 小时前
数论基础知识和模板
数据结构·c++·笔记·算法