【数据结构】详细介绍各种排序算法,包含希尔排序,堆排序,快排,归并,计数排序

目录

[1. 排序](#1. 排序)

[1.1 概念](#1.1 概念)

[1.2 常见排序算法](#1.2 常见排序算法)

[2. 插入排序](#2. 插入排序)

[2.1 直接插入排序](#2.1 直接插入排序)

[2.1.1 基本思想](#2.1.1 基本思想)

[2.1.2 代码实现](#2.1.2 代码实现)

[2.1.3 特性](#2.1.3 特性)

[2.2 希尔排序(缩小增量排序)](#2.2 希尔排序(缩小增量排序))

[2.2.1 基本思想](#2.2.1 基本思想)

[2.2.2 单个gap组的比较](#2.2.2 单个gap组的比较)

[2.2.3 多个gap组比较(一次预排序)](#2.2.3 多个gap组比较(一次预排序))

[2.2.4 多次预排序](#2.2.4 多次预排序)

[2.2.5 特性](#2.2.5 特性)

[3. 选择排序](#3. 选择排序)

[3.1 直接选择排序](#3.1 直接选择排序)

[3.1.1 基本思想](#3.1.1 基本思想)

[3.1.2 代码实现](#3.1.2 代码实现)

[3.1.3 特性](#3.1.3 特性)

[3.2 堆排序](#3.2 堆排序)

[4. 交换排序](#4. 交换排序)

[4.1 冒泡排序](#4.1 冒泡排序)

[4.1.1 基本思想](#4.1.1 基本思想)

[4.1.2 特性](#4.1.2 特性)

[4.2 快速排序](#4.2 快速排序)

[4.2.1 基本思想](#4.2.1 基本思想)

[4.2.2 单趟比较](#4.2.2 单趟比较)

[4.2.3 快排递归实现](#4.2.3 快排递归实现)

[4.2.4 快排优化](#4.2.4 快排优化)

[4.2.5 快排非递归实现](#4.2.5 快排非递归实现)

[4.2.6 特性](#4.2.6 特性)

[4.2.7 三路划分](#4.2.7 三路划分)

[5. 归并排序](#5. 归并排序)

[5.1 递归实现](#5.1 递归实现)

[5.2 特性](#5.2 特性)

[5.3 非递归实现](#5.3 非递归实现)

[5.4 小区间优化](#5.4 小区间优化)

[5.5 外排序](#5.5 外排序)

[6. 计数排序](#6. 计数排序)

[6.1 基本思想](#6.1 基本思想)

[6.2 特性](#6.2 特性)

[7. 选择题](#7. 选择题)


1. 排序

1.1 概念

  1. 排序:所谓排序,就是使一串记录按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

  2. 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的,否则称为不稳定的。

  3. 内排序:数据元素全部放在内存中的排序。

  4. 外排序:在外存中对数据排序。

1.2 常见排序算法


2. 插入排序

2.1 直接插入排序

2.1.1 基本思想

  1. 假设有一个空数组,插入第一个数据时不用比较默认有序,插入第二个数据时要和前面数据比较,插入第三个数据时要和前面数据比较...

  2. 每次新插入数据就和数组的最后一个数据比较,如果比最后一个数据小就继续往前比较,如果比最后一个数据大就放在该数据的后面。


  1. 假设有一个非空无序数组,那么就把第二个元素当作是要插入的元素和第一个比较,这一趟比较完会获得前两个元素有序。

  2. 前两个比较完后,就将第三个元素看作是要插入的元素进行一趟比较,比较完后会获得前三个有序。

  3. 以此类推,直到把最后一个元素看作是要插入的元素,比较完后就全部有序了。

2.1.2 代码实现

cpp 复制代码
void InsertSort(int* arr, int n)
{
	/*一开始全部无序,就假设第一个元素下标是end,end后面是要插入的数,单趟比较结束后有序的数就多了一个,end就要往后一位,
	直到end变成倒数第二个元素的下标,也就意味着只剩最后一个是要插入比较的。*/
	for (int i=0; i<n-1; i++)
	{
		//1. 一开始设end是第一个元素的下标,tmp是end后一位的元素。
		int end = i;
		int tmp = arr[end + 1];

		//2. 如果tmp比arr[end]小,则arr[end]往后挪一位,tmp继续往前比较。
		//3. 如果tmp比arr[end]大,则tmp就放在arr[end]后面。
		//4. 如果tmp比所有元素都小,tmp会一直往前比直到超出数组范围,此时end减到了-1,tmp放在arr[end+1]位置即可。
		while (end >= 0)
		{
			if (tmp < arr[end])
			{
				arr[end + 1] = arr[end];
				end--;
			}
			else break;
		}
		arr[end + 1] = tmp;
	}
}

2.1.3 特性

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高。

  2. 时间复杂度:O(N^2)。

  3. 空间复杂度:O(1)。

  4. 稳定性:稳定,遇到相等不动,可以保证相对顺序。

2.2 希尔排序(缩小增量排序)

2.2.1 基本思想

  1. 先进行多次预排序,预排序之后进行一次直接插入排序。

  2. 假设一个gap = 3,将距离为gap的元素分为一组,一共有gap组,对gap组进行插入排序,这就是预排序。

  3. 当gap = 1时,这就是直接插入排序。

如图可知,红色为一个gap组,蓝色为一个gap组,绿色为一个gap组。

2.2.2 单个gap组的比较

  1. 一个集合被分为多个gap组,这只完成了一个gap组的比较。
cpp 复制代码
    int gap = 3;
	//end只用走到gap组的倒数第二个位置,gap组的倒数第二个和倒数第一个比完就结束了。
	for (int i = 0; i < n - gap; i += gap)
	{
		//通过end_index找到下一个gap组元素。
		int end_index = i;
		int tmp = arr[end_index + gap];

		while (end_index >= 0)
		{
			//tmp小,前面的就往后走,tmp继续往前比较。
			if (tmp < arr[end_index])
			{
				arr[end_index + gap] = arr[end_index];
				end_index -= gap;
			}
			//tmp大,就不用比较,已经有序了。
			else
			{
				break;
			}
		}
		//循环走完了没中断意味着tmp最小,一直往前比到越界了,加回一个gap就是gap组第一个位置。
		arr[end_index + gap] = tmp;
	}

2.2.3 多个gap组比较(一次预排序)

  1. 如上图,gap = 3,集合被分成3个gap组,需要进行三次gap组排序。
cpp 复制代码
	//在单次gap组比较外面加一层循环,循环gap次。
	int gap = 3;
	for (int j = 0; j < gap; j++)
	{
		//end只用走到gap组的倒数第二个位置,gap组的倒数第二个和倒数第一个比完就结束了。
		for (int i = 0; i < n - gap; i += gap)
		{
			//通过end_index找到下一个gap组元素。
			int end_index = i;
			int tmp = arr[end_index + gap];

			while (end_index >= 0)
			{
				//tmp小,前面的就往后走,tmp继续往前比较。
				if (tmp < arr[end_index])
				{
					arr[end_index + gap] = arr[end_index];
					end_index -= gap;
				}
				//tmp大,就不用比较,已经有序了。
				else
				{
					break;
				}
			}
			//循环走完了没中断意味着tmp最小,一直往前比到越界了,加回一个gap就是gap组第一个位置。
			arr[end_index + gap] = tmp;
		}
	}

多个gap组比较的优化:

  1. 上面的代码是将一个gap组排完后再去排另一个gap组。

  2. 如图可知不同的gap组之间是连续的,我们可以将不同的gap组轮流排序,你排一个我排一个。

cpp 复制代码
	int gap = 3;
	//end只用走到gap组的倒数第二个位置,gap组的倒数第二个和倒数第一个比完就结束了。
	//i每次加一,gap组轮流排序。
	for (int i = 0; i < n - gap; i++)
	{
		//通过end_index找到下一个gap组元素。
		int end_index = i;
		int tmp = arr[end_index + gap];

		while (end_index >= 0)
		{
			//tmp小,前面的就往后走,tmp继续往前比较。
			if (tmp < arr[end_index])
			{
				arr[end_index + gap] = arr[end_index];
				end_index -= gap;
			}
			//tmp大,就不用比较,已经有序了。
			else
			{
				break;
			}
		}
		//循环走完了没中断意味着tmp最小,一直往前比到越界了,加回一个gap就是gap组第一个位置。
		arr[end_index + gap] = tmp;
	}

2.2.4 多次预排序

  1. 全部gap组排序完成后叫作一次预排序,事实上我们会通过改变gap的值进行多次预排序。
  1. 一般gap的变化是,gap = gap / 3 + 1 或 gap = gap / 2。
cpp 复制代码
void ShellSort(int* arr, int n)
{
	int gap = n;
	while (gap > 1)
	{
		//gap不断变化不断进行预排序,最后一次是1,相当于是直接插入排序,然后就结束。
		gap = gap / 3 + 1;

		//end只用走到gap组的倒数第二个位置,gap组的倒数第二个和倒数第一个比完就结束了。
		//i每次加一,gap组轮流排序。
		for (int i = 0; i < n - gap; i++)
		{
			//通过end_index找到下一个gap组元素。
			int end_index = i;
			int tmp = arr[end_index + gap];

			while (end_index >= 0)
			{
				//tmp小,前面的就往后走,tmp继续往前比较。
				if (tmp < arr[end_index])
				{
					arr[end_index + gap] = arr[end_index];
					end_index -= gap;
				}
				//tmp大,就不用比较,已经有序了。
				else
				{
					break;
				}
			}
			//循环走完了没中断意味着tmp最小,一直往前比到越界了,加回一个gap就是gap组第一个位置。
			arr[end_index + gap] = tmp;
		}
	}
}

2.2.5 特性

  1. 希尔排序是对直接插入排序的优化。

  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会快很多。

  3. 希尔排序的时间复杂度不固定,不好计算,一般认为是O(n) = n^1.3。

  4. 稳定性:不稳定,被分成不同的gap组无法保证相对顺序。


3. 选择排序

3.1 直接选择排序

3.1.1 基本思想

  1. 每一次从待排序的元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的元素排完。

3.1.2 代码实现

  1. 找出区间中最小的放到区间第一位。

  2. 区间会不断往后缩小。

cpp 复制代码
void SelectSort(int* arr, int n)
{
	int begin = 0;
	int end = n - 1;

	//begin等于end的时候不用排
	while (begin < end)
	{
		int min_i = begin;
		//遍历完当前区间找出最小元素的坐标。
		for (int i = begin; i <= end; i++)
		{
			if (arr[i] < arr[min_i])
			{
				min_i = i;
			}
		}

		//和begin交换。
		Swap(&arr[begin], &arr[min_i]);

		//每排完一个begin就可以往后走。
		begin++;
	}
}

3.1.3 特性

  1. 时间复杂度:O(N^2)

  2. 空间复杂度:O(1)

  3. 稳定性:不稳定,[5, 1, 2, 5, 1],这里的1虽然稳定了,但是5不稳定。

3.2 堆排序

推排序详解: 【数据结构】二叉树的顺序结构,详细介绍堆以及堆的实现,堆排序-CSDN博客

特性:

  1. 时间复杂度:O(N*logN),n+n*logn,建堆+排序。

  2. 空间复杂度:O(1)

  3. 稳定性:不稳定。[8, 8, 7, ...],往后交换就不稳定了。


4. 交换排序

4.1 冒泡排序

4.1.1 基本思想


首先第一个元素9和下一个元素进行比较,9比8大就交换位置,继续9和下一个元素进行比较,直到来到最后或者遇到更大的就停下。这叫一趟冒泡排序。

第二趟将9前面的元素进行排序,10个元素需要9趟,n个元素需要n-1趟。

cpp 复制代码
void BubbleSort(int* arr, int n)
{
	int flag = 1;
	//只用走n-1趟,最后剩下一个数不用比较。
	for (int i = 0; i < n - 1; i++)
	{
		//每一趟比较中,也不用走到该趟的最后一个数。
		for (int j = 0; j < n-i-1; j++)
		{
			if (arr[j] > arr[j + 1])
			{
				flag = 0;
				Swap(&arr[j], &arr[j + 1]);
			}
		}
		//小优化,如果有一趟没发生比较就证明有序了。
		if (flag == 1)
		{
			break;
		}
	}
}

4.1.2 特性

  1. 时间复杂度:O(N^2)

  2. 空间复杂度:O(1)

  3. 稳定性:稳定,遇到相等的不动。

4.2 快速排序

4.2.1 基本思想

  1. 任取待排序元素序列中的某元素作为基准值key(一般去左边第一个或右边第一个)。

  2. 根据key将待排序集合分成两个子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,这是一趟。

  3. 然后子序列重复此过程直到有序。

4.2.2 单趟比较

hoare版本

  1. 如图,左边找比key小,右边找比key大,然后左右交换。

  2. 最后相遇位置和key交换。

  3. 左边做key就右边先走,右边做key就左边先走。


谁先走的问题:

1. 假设右边先走,那么L和R相遇只有两种情况:

情况一:R遇到L,R一直找不到比key小,一直往前走直到遇到L,此时L可能没动过是key的位置,也可能是和R交换后还没动。

情况二:L遇到R,L一直找不到比key大就一直往后走直到遇到R,此时R是遇到比key小停下的。

cpp 复制代码
int PartSort1(int* arr, int left, int right)
{
	//设key是该区间第一个元素的下标。
	int key = left;

	while (left < right)
	{
		//右边先开始找比key元素小的。
		while (right > left && arr[right] >= arr[key])
		{
			right--;
		}

		//右边找完,左边开始找比key元素大的。
		while (left < right && arr[left] <= arr[key])
		{
			left++;
		}

		//左右交换。
		Swap(&arr[left], &arr[right]);
	}

	//相遇点和key交换。
	Swap(&arr[left], &arr[key]);
	key = left;
	return key;
}

挖坑法

  1. 先把左边第一个元素保存起来当作key,同时左边第一个位置变成坑位。

  2. 右边先动,找到比key小的放进坑中,同时自己变成坑。

  3. 然后到左边找到比key大的放进坑中,同时自己变成新的坑。交替进行。

  4. 最后相遇必是坑,放入key。

cpp 复制代码
int PartSort2(int* arr, int left, int right)
{
	//将左边第一个元素当作key保存起来,同时变成坑位。
	int key = arr[left];
	int hole = left;
	
	while (left < right)
	{
		//右边找比key小的放进坑位,然后自己变成坑位。
		while (right > left && arr[right] >= key)
		{
			right--;
		}
		arr[hole] = arr[right];
		hole = right;

		//左边找比key大的放进坑位,然后自己变成坑位。
		while (left < right && arr[left] <= key)
		{
			left++;
		}
		arr[hole] = arr[left];
		hole = left;
	}
	//相遇时肯定是坑,把key放进坑中,返回相遇位置。
	arr[hole] = key;
	return hole;
}

前后指针版本

  1. 设key是第一个元素下标,prev在左边第一个位置,cur在prev后面一个位置。

  2. cur不断遍历直到元素结束。

  3. 当cur位置元素比key大,什么也不做。

  4. 当cur位置元素比key小,prev加一,然后cur和prev交换值。

  5. 最后cur遍历结束,prev位置和key位置交换值。

cpp 复制代码
int PartSort3(int* arr, int left, int right)
{
	//key是第一个元素下标,prev从第一个位置开始,cur在prev后面。
	int key = left;
	int prev = left;
	int cur = prev + 1;

	//cur来遍历
	while (cur <= right)
	{
		//当cur遇到比key小,prev往前走然后交换。
		if (arr[cur] < arr[key])
		{
			prev++;
			//当一直都比key小的时候,prev和cur会重叠。
			if (prev != cur)
			{
				Swap(&arr[cur], &arr[prev]);
			}
		}

		cur++;
	}
	//最后prev和key交换。
	Swap(&arr[prev], &arr[key]);
	//此时左边比prev小,右边比prev大。
	return prev;
}

4.2.3 快排递归实现

  1. 通过单趟排序划分两块区间,大于key的,小于key的。

  2. 不断递归左右区间。

cpp 复制代码
void QuickSort(int* arr, int left, int right)
{
	//递归结束条件, 子序列只有一个值或子序列不存在。
	if (left >= right)
	{
		return;
	}

	//每次单趟排序分出左右子序列,[left, key-1] key [key+1, right]。
	int key = PartSort3(arr, left, right);

	//再对左右子序列进行同样的排序。
	QuickSort(arr, left, key - 1);
	QuickSort(arr, key + 1, right);
}

4.2.4 快排优化

三数取中法

原本是默认第一个元素是key,现在优化为三数取中法选key,目的是应对每次key都是最小的情况。

  1. 固定两个数,另外一个数分情况比较。

  2. 算出三个数的中间值,返回这个中间值的下标。

  3. 将这个值交换到key的位置。

cpp 复制代码
int GetMid(int* arr, int left, int right)
{
	int mid = (left + right) / 2;
	if (arr[left] > arr[mid])
	{
		if (arr[mid] > arr[right])
		{
			return mid;
		}
		else if (arr[left] < arr[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else
	{
		if (arr[left] > arr[right])
		{
			return left;
		}
		else if (arr[right] > arr[mid])
		{
			return mid;
		}
		else
		{
			return right;
		}
	}
}
cpp 复制代码
int PartSort3(int* arr, int left, int right)
{
	//设key在第一个位置,prev从第一个位置开始,cur在prev后面。
	int key = left;
	int prev = left;
	int cur = prev + 1;

	//通过三数取中法,选出一个数交换到key中。
	int mid = GetMid(arr, left, right);
	Swap(&arr[key], &arr[mid]);

	//cur来遍历
	while (cur <= right)
	{
		//当cur遇到比key小,prev往前走然后交换。z
		if (arr[cur] < arr[key])
		{
			prev++;
			//当cur一直都比key小的时候,prev和cur会重叠。
			if (prev != cur)
			{
				Swap(&arr[cur], &arr[prev]);
			}
		}

		cur++;
	}
	//最后prev和key交换。
	Swap(&arr[prev], &arr[key]);
	key = prev;
	return key;
}

4.2.5 快排非递归实现

  1. 思想:利用栈存储区间的下标,通过出栈入栈控制下标区间的排序。

  2. 先存入初始区间的下标,出栈获得下标进行单趟排序,又重新获得两个子区间的下标入栈。

  3. 栈就是媒介,用来保存下标。利用后进先出可以让后面进来的下标先排序。

cpp 复制代码
void QuickSortNonR(int* arr, int left, int right)
{
	//利用栈实现
	Stack st;
	StackInit(&st);

	//先将初始的区间入栈
	StackPush(&st, right);
	StackPush(&st, left);

	while (!StackEmpty(&st))
	{
		//出栈获得区间下标进行单趟排序
		int left = StackTop(&st);
		StackPop(&st);
		int right = StackTop(&st);
		StackPop(&st);
		//[left, key-1] key [key+1, right]
		int key = PartSort3(arr, left, right);

		//将分割好的区间继续入栈,等下次出栈排序
		//先入右边再入左边
		//当区间只有一个元素或区间不存在就不入栈。
		if (key + 1 < right)
		{
			StackPush(&st, right);
			StackPush(&st, key + 1);
		}

		if (left < key - 1)
		{
			StackPush(&st, key - 1);
			StackPush(&st, left);
		}
	}

	StackDestroy(&st);
}

4.2.6 特性

  1. 空间复杂度O(n) = logn(2为底),不断递归会不断建立栈帧,一共有logn层。

  2. 时间复杂度O(n) = n*logn(2为底),一共logn层递归,每层消耗n。

  3. 稳定性:不稳定

4.2.7 三路划分

  1. 三路划分应对当很多值都等于key的时候。
cpp 复制代码
void QuickSort(int* arr, int left, int right)
{
	//递归结束条件, 子序列只有一个值或子序列不存在。
	if (left >= right)
	{
		return;
	}

	//三路划分分出左右子序列,[left, key1-1] [key1, key2] [key2+1, right]。
	int key = arr[left];
	int key1 = left;
	int key2 = right;
	int cur = left + 1;
	//遇到小的放左边,大的放右边,相等的跳过。
	while (cur <= key2)
	{
		if (arr[cur] < key)
		{
			Swap(&arr[cur], &arr[key1]);
			key1++;
			cur++;
		}
		else if (arr[cur] > key)
		{
			Swap(&arr[cur], &arr[key2]);
			key2--;
		}
		else
		{
			cur++;
		}
	}

	//再对左右子序列进行同样的排序。
	QuickSort(arr, left, key1 - 1);
	QuickSort(arr, key2 + 1, right);
}

5. 归并排序

5.1 递归实现

  1. 将区间从中间平分得到两个子区间,利用后序思想不断分化区间直到区间只剩一个数。

  2. 当区间分化完后再回来归并。

  3. 利用临时数组归并然后拷贝回原数组。

  1. 将区间从中间平分得到两个子区间,利用后序思想不断分化区间直到区间只剩一个数。

  2. 当区间分化完后再回来归并。

  3. 利用临时数组归并然后拷贝回原数组。

  4. 因为取区间的中间下标向下调整了,所以不会出现区间不存在的情况,最终都只会是区间只有一个数。

cpp 复制代码
void _MergeSort(int* arr, int begin, int end, int* tmp)
{
	//递归结束条件:只有一个数。
	if (begin == end)
	{
		return;
	}

	//将区间平分[begin, mid] [mid+1, end]
	int mid = (begin + end) / 2;
	_MergeSort(arr, begin, mid, tmp);
	_MergeSort(arr, mid + 1, end, tmp);

	//归并,对两个区间进行排序插入临时数组中。
	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int tmp_i = begin;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (arr[begin1] <= arr[begin2])
		{
			tmp[tmp_i] = arr[begin1];
			tmp_i++;
			begin1++;
		}
		else
		{
			tmp[tmp_i] = arr[begin2];
			tmp_i++;
			begin2++;
		}
	}

	while (begin1 <= end1)
	{
		tmp[tmp_i] = arr[begin1];
		tmp_i++;
		begin1++;
	}

	while (begin2 <= end2)
	{
		tmp[tmp_i] = arr[begin2];
		tmp_i++;
		begin2++;
	}
	//归并一段,拷贝一段,根据开始的位置拷贝回去。
	memcpy(arr + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}

// 归并排序递归实现
void MergeSort(int* arr, int n)
{
	//临时数组用来归并
	int* tmp = (int*)malloc(sizeof(int) * n);

	//传入区间的下标。
	_MergeSort(arr, 0, n - 1, tmp);

	free(tmp);
}

5.2 特性

  1. 时间复杂度:O(N*logN),一共会递归logN层,每层消耗N。

  2. 空间复杂度:O(N),开了临时数组,递归建立栈帧也有消耗logN不过可以忽略。

  3. 稳定性:稳定,相等的时候控制左区间先尾插入数组。

  4. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。

5.3 非递归实现

思想:

  1. 利用循环遍历归并区间,利用gap控制区间个数。
cpp 复制代码
void MergeSortNonR(int* arr, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);

	//遍历数组进行归并,区间的个数是gap。
	//gap表示区间个数,每次归并两个区间,区间个数从1开始,每次归并完会呈2倍增长。1,2,4...
	for (int gap = 1; gap < n; gap *= 2)
	{
		int tmp_i = 0;
		for (int i = 0; i < n; i += gap * 2)
		{
			//归并区间的下标
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			//归并
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (arr[begin1] <= arr[begin2])
				{
					tmp[tmp_i] = arr[begin1];
					tmp_i++;
					begin1++;
				}
				else
				{
					tmp[tmp_i] = arr[begin2];
					tmp_i++;
					begin2++;
				}
			}

			while (begin1 <= end1)
			{
				tmp[tmp_i] = arr[begin1];
				tmp_i++;
				begin1++;
			}

			while (begin2 <= end2)
			{
				tmp[tmp_i] = arr[begin2];
				tmp_i++;
				begin2++;
			}
			//归并一段,拷贝一段。
			memcpy(arr + i, tmp + i, sizeof(int) * (end2 - i + 1));
		}
	}
	
	free(tmp);
}

修正:

  1. 上面的代码只适用于数组个数是2的倍数的情况,其他个数会有三种越界情况。

  2. 因为gap每次都是二倍增长,所以单纯使用gap来定义下标会造成超过原数组。

  3. 如图,有两种情况最后是凑不出两个区间归并的,我们就不归并,还有一种是最后能凑出两个区间,只不过最后一个区间比较小,我们就把最后一个下标手动调整到数组最后一位即可。

cpp 复制代码
void MergeSortNonR(int* arr, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);

	//遍历数组进行归并,区间的个数是gap。
	//gap表示区间个数,每次归并两个区间,区间个数从1开始,每次归并完会呈2倍增长。1,2,4...
	for (int gap = 1; gap < n; gap *= 2)
	{
		int tmp_i = 0;
		for (int i = 0; i < n; i += gap * 2)
		{
			//归并区间的下标
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			//判断下标是否合法
			//最后这一组归并凑不出两个区间就直接不归并了。
			if (end1 >= n || begin2 >= n)
			{
				break;
			}
			//通过gap算出的第二个区间的下标越界了,就手动把下标缩减。
			if (end2 >= n)
			{
				end2 = n - 1;
			}
			//归并
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (arr[begin1] <= arr[begin2])
				{
					tmp[tmp_i] = arr[begin1];
					tmp_i++;
					begin1++;
				}
				else
				{
					tmp[tmp_i] = arr[begin2];
					tmp_i++;
					begin2++;
				}
			}
			while (begin1 <= end1)
			{
				tmp[tmp_i] = arr[begin1];
				tmp_i++;
				begin1++;
			}
			while (begin2 <= end2)
			{
				tmp[tmp_i] = arr[begin2];
				tmp_i++;
				begin2++;
			}
			//归并一段,拷贝一段。
			memcpy(arr + i, tmp + i, sizeof(int) * (end2 - i + 1));
		}
	}
	
	free(tmp);
}

第二种拷贝方法:

如果你想每层gap归并完再拷贝,你就需要改变以下修正。

  1. end1越界:那么你就把end1改成数组最后一位,第二个区间改成不存在,这样子可以复用下面的while,就是单纯的把当前区间尾插到tmp中。

  2. begin2越界:那直接把第二个区间改不存在,第一个区间走下面的循环直接尾插tmp。

  3. end2越界:这个把end2改成数组最后一位,可以凑成两个区间。

5.4 小区间优化

  1. 当递归分化的区间个数小于10时,可以使用直接插入排序。

  2. 适用于快排和归并。

  3. 当个数小于10不递归可以减少最后三层递归,以满二叉树为例,总节点有2^h - 1,最后三层节点有2^(h-1) + 2^(h-2) + 2^(h-3),已经占了总节点的%80了。

cpp 复制代码
    //当分化的区间个数小于10就使用直接插入排序。
	if (end - begin + 1 < 10)
	{
		//传入区间的开始位置和区间的个数。
		InsertSort(arr + begin, end - begin + 1);
		return;
	}

5.5 外排序

  1. 外排序是在外存对数据进行排序,这里用到归并排序的思想。

  2. 假设有一个40G的文件,但只有1G内存。需要先把文件分成40个1G的小文件,然后在内存中把1G的小文件内容排序好,接着在外存中对文件进行归并。40个有序的小文件不断归并成大文件。


6. 计数排序

6.1 基本思想

  1. 统计每个元素个数。

  2. 根据元素个数在原数组写入。

  1. 利用相对映射实现下标对应。最小值减最小值就是0,每个数都去减最小值就是下标。
  1. 最大值减最小值求出个数来确定统计数组要开多大空间。
cpp 复制代码
void CountSort(int* arr, int n)
{
	int max = arr[0];
	int min = arr[0];
	//遍历找出最大值和最小值。
	for (int i = 1; i < n; i++)
	{
		if (arr[i] < min)
		{
			min = arr[i];
		}
		else if (arr[i] > max)
		{
			max = arr[i];
		}
	}
	
	//算出统计数组要开多大。
	int size = max - min + 1;
	int* count_arr = (int*)malloc(sizeof(int) * size);

	//利用相对映射,元素出现一次就加一次。
	for (int i = 0; i < n; i++)
	{
		count_arr[arr[i] - min]++;
	}

	//遍历统计的数组,原数组就按顺序写。
	int arr_i = 0;
	for (int i = 0; i < size; i++)
	{
		//统计的次数有多少次就写多少次。
		//下标加回最小值就是原本的数值。
		while (count_arr[i])
		{
			arr[arr_i] = i + min;
			arr_i++;
			count_arr[i]--;
		}
	}
}

6.2 特性

  1. 时间复杂度:O(max(n, size)),有两个数组遍历,不确定大小关系。

  2. 空间复杂度:O(size),统计数组的空间。

  3. 缺点:只能比较整型,适用范围集中的数组。

  4. 稳定性:稳定。


7. 选择题

  1. 快速排序算法是基于( )的一个排序算法。

A分治法

B贪心法

C递归法

D动态规划法

答:A
2.对记录(54,38,96,23,15,72,60,45,83)进行从小到大的直接插入排序时,当把第8个记录45插入到有序表时,为找到插入位置需比较( )次?(采用从后往前比较)

A 3

B 4

C 5

D 6

答:C
3.以下排序方式中占用O(n)辅助存储空间的是

A 简单排序

B 快速排序

C 堆排序

D 归并排序

答:D
4.下列排序算法中稳定且时间复杂度为O(n2)的是( )

A 快速排序

B 冒泡排序

C 直接选择排序

D 归并排序

答:B
5.关于排序,下面说法不正确的是

A 快排时间复杂度为O(N*logN),空间复杂度为O(logN)

B 归并排序是一种稳定的排序,堆排序和快排均不稳定

C 序列基本有序时,快排退化成冒泡排序,直接插入排序最快

D 归并排序空间复杂度为O(N), 堆排序空间复杂度的为O(logN)

答:D
6.下列排序法中,最坏情况下时间复杂度最小的是( )

A 堆排序

B 快速排序

C 希尔排序

D 冒泡排序

答:A


7.设一组初始记录关键字序列为(65,56,72,99,86,25,34,66),则以第一个关键字65为基准而得到的一趟快速排序结果是()

A 34,56,25,65,86,99,72,66

B 25,34,56,65,99,86,72,66

C 34,56,25,65,66,99,86,72

D 34,56,25,65,99,86,72,66

答:A

完整代码:Sort/Sort/Sort.c · 林宇恒/DataStructure - 码云 - 开源中国 (gitee.com)

相关推荐
JingHongB4 分钟前
代码随想录算法训练营Day55 | 图论理论基础、深度优先搜索理论基础、卡玛网 98.所有可达路径、797. 所有可能的路径、广度优先搜索理论基础
算法·深度优先·图论
weixin_432702267 分钟前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
小冉在学习9 分钟前
day52 图论章节刷题Part04(110.字符串接龙、105.有向图的完全可达性、106.岛屿的周长 )
算法·深度优先·图论
Repeat71510 分钟前
图论基础--孤岛系列
算法·深度优先·广度优先·图论基础
小冉在学习12 分钟前
day53 图论章节刷题Part05(并查集理论基础、寻找存在的路径)
java·算法·图论
武子康24 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
passer__jw7671 小时前
【LeetCode】【算法】283. 移动零
数据结构·算法·leetcode
Ocean☾1 小时前
前端基础-html-注册界面
前端·算法·html
顶呱呱程序1 小时前
2-143 基于matlab-GUI的脉冲响应不变法实现音频滤波功能
算法·matlab·音视频·matlab-gui·音频滤波·脉冲响应不变法
TeYiToKu1 小时前
笔记整理—linux驱动开发部分(9)framebuffer驱动框架
linux·c语言·arm开发·驱动开发·笔记·嵌入式硬件·arm