NCU-机器学习-作业1:基于KNN的IRIS分类

任务描述:

请设计一个分类器,根据花朵的萼片长度(sepal length)、萼片宽度sepalwidth)、花瓣长度(petal length)和花瓣宽度(petal width)来预测它属于三种不同的鸢尾属植物setosa、versicolor和virginica中的哪一种。

输入数据:

在train/目录下包含一个train.csv文件,其中每行代表一个已知样例。文件中每行共有6列,第一列为id,2-5列为四个属性值,最后一列表示该花朵属于哪种植物,分别用0,1,2来表示setosa、versicolor和virginica。

在test/目录下包含一个test.csv文件,与train.csv类似,每一行表示一朵花瓣的四个属性参数和ID,不过不包含它的分类值,您需要根据参数给出预测。

输出数据:

你的程序需要生成一个result.csv文件,用于保存你程序对花朵情况的预测结果。输出csv文件格式见下方

输入样例:

复制代码
Id,Sepal.Length,Sepal.Width,Petal.Length,Petal.Width,Species
1,5.1,3.5,1.4,0.2,0
2,4.9,3.0,1.4,0.2,0
3,4.7,3.2,1.3,0.2,0
4,4.6,3.1,1.5,0.2,0

输出样例:

复制代码
Id,Species
1,1
2,0
3,2
4,2
5,2
6,2

思路代码:

python 复制代码
# 导入所需的库
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

# 加载训练数据
data = pd.read_csv('train/train.csv')

# 分割特征和目标变量
X = data.iloc[:, 1:-1]  # 特征,0列为ID,所以从1列开始
y = data.iloc[:, -1]  # 目标值 (labels)

# 数据预处理(暂时只做标准化,也可以不做)
scaler = StandardScaler()
X_train = scaler.fit_transform(X)
y_train = list(y)

# 初始化并训练KNN分类器
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)

# 加载测试数据
test_data = pd.read_csv('test/test.csv')

# 分割特征和目标变量
X = test_data.iloc[:, 1:-1]  # 特征
y = test_data.iloc[:, -1]   # 目标值

# 数据预处理
scaler = StandardScaler()
X_test = scaler.fit_transform(X)
y_test = list(y)

# 预测
y_pred = knn.predict(X_test)

# print(knn.score(X_test, y_test))

df = pd.DataFrame(data=test_data['Id'], columns=['Id'])
df['Species'] = y_pred
df.to_csv('result.csv', index=False)

数据代码:

如果无数据测试,可以从内置数据集中生成,代码如下。

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd

# 加载鸢尾花数据集
iris_dataset = load_iris()
# 划分训练集和测试集,一共150份数据,按9:1划分数据集
X_train, X_test, y_train, y_test = train_test_split(iris_dataset.data, iris_dataset.target, test_size=0.1)

df1 = pd.DataFrame(data=X_train,
                   columns=['Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'])
df1['Species'] = y_train

df2 = pd.DataFrame(data=X_test,
                   columns=['Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'])
df2['Species'] = y_test

df1.to_csv('train/train.csv', index_label='Id')  # 训练集
df2.to_csv('test/test.csv', index_label='Id')  # 测试集

答案提交:

提交result.csv压缩成的压缩包即可,无需提交py文件,result.csv中记录要求15条。为了安心,也可以在压缩包中加入py文件,单纯提交py文件无法通过(泪的教训)。

相关推荐
N0nename9 分钟前
TR3--Transformer之pytorch复现
人工智能·pytorch·python
北京耐用通信28 分钟前
电力自动化新突破:Modbus如何变身Profinet?智能仪表连接的终极解决方案
人工智能·物联网·网络安全·自动化·信息与通信
golang学习记1 小时前
VSCode Copilot 编码智能体实战指南:让 AI 自主开发,你只负责 Review!
人工智能
渡我白衣1 小时前
深度学习进阶(八)——AI 操作系统的雏形:AgentOS、Devin 与多智能体协作
人工智能·深度学习
万岳软件开发小城1 小时前
AI数字人系统源码+AI数字人小程序开发:2025年热门AI项目
人工智能·开源·软件开发·app开发·ai数字人小程序·ai数字人系统源码
CLubiy1 小时前
【研究生随笔】Pytorch中的线性代数
pytorch·python·深度学习·线性代数·机器学习
xiangzhihong81 小时前
Spring Boot集成SSE实现AI对话的流式响应
人工智能·spring boot
羊羊小栈1 小时前
基于知识图谱(Neo4j)和大语言模型(LLM)的图检索增强(GraphRAG)的台风灾害知识问答系统(vue+flask+AI算法)
人工智能·毕业设计·知识图谱·创业创新·neo4j·毕设·大作业
+wacyltd大模型备案算法备案2 小时前
【大模型备案】全国有439个大模型通过生成式人工智能大模型备案!
人工智能
学不会就看2 小时前
PyTorch 张量学习
人工智能·pytorch·学习