Why I‘m getting 404 Resource Not Found to my newly Azure OpenAI deployment?

**题意:**为什么我新部署的Azure OpenAI服务会出现404资源未找到的错误?

问题背景:

I've gone through this quickstart and I created my Azure OpenAI resource + created a model deployment which is in state succeedded. I also playaround it in Azure OpenAI Studio - Microsoft Azure and it works there.

我已经按照快速入门指南操作,创建了我的Azure OpenAI资源,并成功部署了一个模型。我也在Azure OpenAI Studio - Microsoft Azure中测试了它,并且在那里工作正常。

But, If I try to reach it from REST API is returns 404 Resource Not Found. I defined the api-key header, and took the url and json from Code View -> json from inside the playground.

但是,如果我尝试通过REST API访问它,它会返回404资源未找到。我已经定义了api-key头部,并且从playground里面的Code View->json获取了URL和JSON。

I'm executing

POST https://raz-openai.openai.azure.com/openai/deployments/raz-model-2/completions?api-version=2022-12-01 { "prompt": "", "max_tokens": 100 } with api-key header

Am I missing another step?

我是不是遗漏了其他步骤?

问题解决:

I was also getting a 404 calling the Chat Completions API (https://{resource}.openai.azure.com/openai/deployments/{deployment}/chat/completions) and it turned out that I was using the wrong version. Each model has one or more versions that can be found at Azure OpenAI Service REST API reference.

我在调用聊天补全API(https://{resource}.openai.azure.com/openai/deployments/{deployment}/chat/completions)时也遇到了404错误,后来发现是我使用了错误的版本。每个模型都有一个或多个版本,可以在Azure OpenAI服务REST API参考中找到。

For me, hitting the chat completions (ChatGPT), the correct URL with version was:

对于我来说,在调用聊天补全(ChatGPT)时,带有版本的正确URL是:

https://{resource}.openai.azure.com/openai/deployments/{deployment}/chat/completions?api-version=2023-03-15-preview

Any other version will give a 404 Resource Not Found.

任何其他版本都会返回404资源未找到错误。

Also, here are the definitions of those variables:

另外,以下是这些变量的定义:

  • Resource: Take from the Azure endpoint URL, which can be found on the Overview page in your OpenAI Services resource. The format should be something like https://{resource}.openai.azure.com/

资源(Resource):从Azure端点URL中获取,该URL可以在你的OpenAI服务资源的"概览"页面中找到。URL的格式应该类似于https://{resource}.openai.azure.com/,其中{resource}是你的OpenAI资源名称。这个URL是你与Azure OpenAI服务进行交互的基础,用于构建指向不同API端点的请求。

  • Deployment (aka deployment-id): You can find this in the Azure portal under the Model Deployments section. Each model has a "Model Deployment Name" and this is your Deployment ID. This isn't going to be the OpenAI name (like gpt-35-turbo) but rather the name you gave it when creating the model deployment.

部署(Deployment)(也称为部署ID):你可以在Azure门户的"模型部署"部分找到这个信息。每个模型都有一个"模型部署名称",这就是你的部署ID。这个名称不是OpenAI的模型名称(如gpt-35-turbo),而是你在创建模型部署时自己指定的名称。确保在调用API时使用了正确的部署名称,以便能够正确地与你的自定义模型部署进行交互。

相关推荐
AI360labs_atyun2 小时前
AI教育开启新篇章
人工智能·百度·ai
CoderJia程序员甲4 小时前
GitHub 热榜项目 - 日榜(2025-10-17)
ai·llm·github·开源项目·github热榜
Elastic 中国社区官方博客10 小时前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
HyperAI超神经15 小时前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克
尽兴-17 小时前
【10 分钟!M4 Mac mini 离线部署「私有 ChatGPT」完整实录】
macos·ai·chatgpt·大模型·ollama·私有化
武子康19 小时前
AI-调查研究-105-具身智能 机器人学习数据采集:从示范视频到状态-动作对的流程解析
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能
同创永益19 小时前
产品动态 | IStorm Copilot V1.1产品发布
ai·copilot·it·同创永益·数字韧性
GISer_Jing20 小时前
LLM对话框项目技术栈&重难点总结
前端·ai·node.js
非晓为骁21 小时前
AI-Native 能力反思(三):Prompt Engineering 自我提升神器
人工智能·ai·prompt·ai-native·提示词工程
Paraverse_徐志斌1 天前
RAG架构(检索增强生成)与向量数据库
数据库·ai·llm·embedding·milvus·rag