1-21 角点检测 opencv树莓派4B 入门系列笔记

目录

一、提前准备

二、代码详解

三、运行现象

四、完整工程贴出


一、提前准备

1、树莓派4B 及 64位系统

2、提前安装opencv库 以及 numpy库

3、保存一张图片

二、代码详解

python 复制代码
import cv2

img = cv2.imread('jihe.jpg')
# 角点检测需要转换为灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 角点检测  
dst = cv2.cornerHarris(img_gray, 4, 3, 0.04)
# 每个点得到的结果值大于最大角点值的0.01倍,即认为该点为角点,并用[0, 0, 255]红色绘制出
img[dst > 0.01 * dst.max()] = [0, 0, 255]
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows() 

cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

这个函数用于转换图像的颜色空间。在这里,它将原始图像(通常是BGR格式)转换为灰度图。灰度图只有一个颜色通道,这在许多图像处理任务中是必要的,因为它们不需要处理颜色信息。

cv2.cornerHarris(img_gray, 4, 3, 0.04)

这是Harris角点检测算法的实现。它接受四个参数:

img_gray:输入的灰度图像。

0.04:Harris检测器的自由参数,用于调整角点响应函数的灵敏度。这个函数会返回一个与输入图像大小相同的响应图,图中的每个像素值表示该位置成为角点的可能性。

3:Sobel算子的孔径大小,用于计算图像的梯度。

4:角点检测的区块大小,即每个角点周围的邻域大小。

img[dst > 0.01 * dst.max()] = [0, 0, 255]

这行代码是在响应图dst上进行阈值操作,以确定角点的位置。它将响应图中大于其最大值的0.01倍的像素点设置为红色(BGR格式中的[0, 0, 255])。

这意味着只有响应值足够高的点才会被认为是角点,并在原始图像上用红色标记。

三、运行现象

四、完整工程贴出

持续更新中......

相关推荐
美味的大香蕉几秒前
Spark Core编程
笔记
明月看潮生4 分钟前
青少年编程与数学 02-016 Python数据结构与算法 14课题、动态规划
python·算法·青少年编程·动态规划·编程与数学
明月看潮生5 分钟前
青少年编程与数学 02-016 Python数据结构与算法 11课题、分治
python·算法·青少年编程·编程与数学
liangmou21219 分钟前
HTML5的笔记
前端·笔记·html·html5
2401_8848107414 分钟前
SpringBoot3快速入门笔记
笔记
果冻人工智能14 分钟前
我们准备好迎接AI的下一次飞跃了吗?
人工智能
源客z21 分钟前
SD + Contronet,扩散模型V1.5+约束条件后续优化:保存Canny边缘图,便于视觉理解——stable diffusion项目学习笔记
图像处理·算法·计算机视觉
刘大猫2625 分钟前
Arthas profiler(使用async-profiler对应用采样,生成火焰图)
java·人工智能·后端
果冻人工智能30 分钟前
猿群结伴强大,但AI代理不行:为什么多智能体系统会失败?
人工智能
A林玖1 小时前
【学习笔记】服务器上使用 nbconvert 将 Jupyter Notebook 转换为 PDF
服务器·笔记·学习