1-21 角点检测 opencv树莓派4B 入门系列笔记

目录

一、提前准备

二、代码详解

三、运行现象

四、完整工程贴出


一、提前准备

1、树莓派4B 及 64位系统

2、提前安装opencv库 以及 numpy库

3、保存一张图片

二、代码详解

python 复制代码
import cv2

img = cv2.imread('jihe.jpg')
# 角点检测需要转换为灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 角点检测  
dst = cv2.cornerHarris(img_gray, 4, 3, 0.04)
# 每个点得到的结果值大于最大角点值的0.01倍,即认为该点为角点,并用[0, 0, 255]红色绘制出
img[dst > 0.01 * dst.max()] = [0, 0, 255]
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows() 

cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

这个函数用于转换图像的颜色空间。在这里,它将原始图像(通常是BGR格式)转换为灰度图。灰度图只有一个颜色通道,这在许多图像处理任务中是必要的,因为它们不需要处理颜色信息。

cv2.cornerHarris(img_gray, 4, 3, 0.04)

这是Harris角点检测算法的实现。它接受四个参数:

img_gray:输入的灰度图像。

0.04:Harris检测器的自由参数,用于调整角点响应函数的灵敏度。这个函数会返回一个与输入图像大小相同的响应图,图中的每个像素值表示该位置成为角点的可能性。

3:Sobel算子的孔径大小,用于计算图像的梯度。

4:角点检测的区块大小,即每个角点周围的邻域大小。

img[dst > 0.01 * dst.max()] = [0, 0, 255]

这行代码是在响应图dst上进行阈值操作,以确定角点的位置。它将响应图中大于其最大值的0.01倍的像素点设置为红色(BGR格式中的[0, 0, 255])。

这意味着只有响应值足够高的点才会被认为是角点,并在原始图像上用红色标记。

三、运行现象

四、完整工程贴出

持续更新中......

相关推荐
一枕眠秋雨>o<6 分钟前
算子之力:解码CANN ops-nn如何重塑昇腾AI计算范式
人工智能
AI科技7 分钟前
原创音乐人运用AI编曲软件,编曲怎么配和弦的声音
人工智能
dazzle9 分钟前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
那个村的李富贵11 分钟前
智能炼金术:CANN加速的新材料AI设计系统
人工智能·算法·aigc·cann
凯子坚持 c12 分钟前
CANN 生态新星:`minddata-dataset-engine` 如何加速 AI 数据 pipeline
人工智能
Fairy要carry14 分钟前
面试-GRPO强化学习
开发语言·人工智能
xiaobaibai15316 分钟前
营销自动化终极形态:AdAgent 自主闭环工作流全解析
大数据·人工智能·自动化
自不量力的A同学22 分钟前
Solon AI v3.9 正式发布:全能 Skill 爆发
java·网络·人工智能
一枕眠秋雨>o<27 分钟前
从抽象到具象:TBE如何重构AI算子的编译哲学
人工智能
xiaobaibai15328 分钟前
决策引擎深度拆解:AdAgent 用 CoT+RL 实现营销自主化决策
大数据·人工智能