1-21 角点检测 opencv树莓派4B 入门系列笔记

目录

一、提前准备

二、代码详解

三、运行现象

四、完整工程贴出


一、提前准备

1、树莓派4B 及 64位系统

2、提前安装opencv库 以及 numpy库

3、保存一张图片

二、代码详解

python 复制代码
import cv2

img = cv2.imread('jihe.jpg')
# 角点检测需要转换为灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 角点检测  
dst = cv2.cornerHarris(img_gray, 4, 3, 0.04)
# 每个点得到的结果值大于最大角点值的0.01倍,即认为该点为角点,并用[0, 0, 255]红色绘制出
img[dst > 0.01 * dst.max()] = [0, 0, 255]
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows() 

cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

这个函数用于转换图像的颜色空间。在这里,它将原始图像(通常是BGR格式)转换为灰度图。灰度图只有一个颜色通道,这在许多图像处理任务中是必要的,因为它们不需要处理颜色信息。

cv2.cornerHarris(img_gray, 4, 3, 0.04)

这是Harris角点检测算法的实现。它接受四个参数:

img_gray:输入的灰度图像。

0.04:Harris检测器的自由参数,用于调整角点响应函数的灵敏度。这个函数会返回一个与输入图像大小相同的响应图,图中的每个像素值表示该位置成为角点的可能性。

3:Sobel算子的孔径大小,用于计算图像的梯度。

4:角点检测的区块大小,即每个角点周围的邻域大小。

img[dst > 0.01 * dst.max()] = [0, 0, 255]

这行代码是在响应图dst上进行阈值操作,以确定角点的位置。它将响应图中大于其最大值的0.01倍的像素点设置为红色(BGR格式中的[0, 0, 255])。

这意味着只有响应值足够高的点才会被认为是角点,并在原始图像上用红色标记。

三、运行现象

四、完整工程贴出

持续更新中......

相关推荐
Channing Lewis14 小时前
脑机智能会成为意识迁移的过渡形态吗
人工智能
王老师青少年编程14 小时前
csp信奥赛C++标准模板库STL案例应用3
c++·算法·stl·csp·信奥赛·lower_bound·标准模版库
铜豌豆_Y15 小时前
【实用】GDB调试保姆级教程|常用操作|附笔记
linux·c语言·驱动开发·笔记·嵌入式
有为少年15 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
GISer_Jing15 小时前
跨境营销前端AI应用业务领域
前端·人工智能·aigc
Ven%15 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
山楂树の15 小时前
爬楼梯(动态规划)
算法·动态规划
OpenCSG15 小时前
OpenCSG社区:激发城市AI主权创新引擎
人工智能·opencsg·agentichub
谈笑也风生15 小时前
经典算法题型之复数乘法(二)
开发语言·python·算法
大厂技术总监下海16 小时前
没有千卡GPU,如何从0到1构建可用LLM?nanoChat 全栈实践首次公开
人工智能·开源