1-21 角点检测 opencv树莓派4B 入门系列笔记

目录

一、提前准备

二、代码详解

三、运行现象

四、完整工程贴出


一、提前准备

1、树莓派4B 及 64位系统

2、提前安装opencv库 以及 numpy库

3、保存一张图片

二、代码详解

python 复制代码
import cv2

img = cv2.imread('jihe.jpg')
# 角点检测需要转换为灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 角点检测  
dst = cv2.cornerHarris(img_gray, 4, 3, 0.04)
# 每个点得到的结果值大于最大角点值的0.01倍,即认为该点为角点,并用[0, 0, 255]红色绘制出
img[dst > 0.01 * dst.max()] = [0, 0, 255]
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows() 

cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

这个函数用于转换图像的颜色空间。在这里,它将原始图像(通常是BGR格式)转换为灰度图。灰度图只有一个颜色通道,这在许多图像处理任务中是必要的,因为它们不需要处理颜色信息。

cv2.cornerHarris(img_gray, 4, 3, 0.04)

这是Harris角点检测算法的实现。它接受四个参数:

img_gray:输入的灰度图像。

0.04:Harris检测器的自由参数,用于调整角点响应函数的灵敏度。这个函数会返回一个与输入图像大小相同的响应图,图中的每个像素值表示该位置成为角点的可能性。

3:Sobel算子的孔径大小,用于计算图像的梯度。

4:角点检测的区块大小,即每个角点周围的邻域大小。

img[dst > 0.01 * dst.max()] = [0, 0, 255]

这行代码是在响应图dst上进行阈值操作,以确定角点的位置。它将响应图中大于其最大值的0.01倍的像素点设置为红色(BGR格式中的[0, 0, 255])。

这意味着只有响应值足够高的点才会被认为是角点,并在原始图像上用红色标记。

三、运行现象

四、完整工程贴出

持续更新中......

相关推荐
xinxiyinhe25 分钟前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹29 分钟前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频
roman_日积跬步-终至千里30 分钟前
【后端基础】布隆过滤器原理
算法·哈希算法
alphaAIstack39 分钟前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理
若兰幽竹44 分钟前
【机器学习】多元线性回归算法和正规方程解求解
算法·机器学习·线性回归
鱼力舟1 小时前
【hot100】240搜索二维矩阵
算法
zenRRan1 小时前
Qwen2.5-VL Technical Report!!! 操作手机电脑、解析化学公式和乐谱、剪辑电影等,妥妥六边形战士 !...
人工智能
冒泡的肥皂1 小时前
DeepSeek+Dify打造数据库查询专家
人工智能
电棍2331 小时前
verilog笔记
笔记·fpga开发
让我安静会1 小时前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot