机器学习-逻辑回归原理及其公式

逻辑回归(Logistic Regression)是一种广泛应用于分类任务的统计学方法,尤其是在二分类问题中表现尤为突出。尽管它的名字中包含"回归",但实际上逻辑回归是一种分类算法。逻辑回归的目标是预测一个样本属于某一类别的概率,而不是预测一个连续值。

逻辑回归原理

逻辑回归的核心在于使用 Sigmoid 函数(也称为 Logistic 函数)来将线性回归的输出映射到 [0, 1] 之间的概率值。这个函数具有 S 形状,可以将任何实数映射到 [0, 1] 之间,非常适合用来表示概率。

Sigmoid 函数

Sigmoid 函数的数学表达式为:

其中 zz 是输入值,σ(z)σ(z) 是经过 Sigmoid 函数后的输出值。这个函数的特点是随着 zz 的增加,σ(z)σ(z) 逐渐接近 1;随着 zz 的减小,σ(z)σ(z) 逐渐接近 0。

模型表达式

逻辑回归模型的表达式可以表示为:

其中:

  • ww 是权重向量,每个特征对应一个权重;
  • xx 是输入特征向量;
  • bb 是偏置项;
  • P(y=1∣x)P(y=1∣x) 表示给定输入 xx 时,目标变量 yy 为 1 的概率。

损失函数

逻辑回归通常使用交叉熵损失函数(Cross-Entropy Loss)来衡量模型的预测结果与真实标签之间的差距。对于二分类问题,损失函数可以定义为:

其中:

梯度下降法

为了最小化损失函数,逻辑回归通常采用梯度下降法来更新权重向量 𝑤和偏置项 𝑏。梯度下降法的基本步骤如下:

  • 初始化权重向量 𝑤和偏置项 𝑏;
  • 计算损失函数关于 𝑤和 𝑏的梯度;
  • 更新 𝑤和 𝑏:

其中 α 是学习率,决定了每次更新的步长。

示例计算梯度

对于权重向量 𝑤,损失函数的梯度为:

对于偏置项 𝑏,损失函数的梯度为:

通过不断迭代更新 w 和 b,直到损失函数收敛或者达到预定的最大迭代次数。

总结

逻辑回归是一种基于 Sigmoid 函数的概率模型,用于解决分类问题。它通过最小化交叉熵损失函数来学习最优的权重向量和偏置项。通过梯度下降法不断更新模型参数,使得模型能够更好地拟合训练数据,并用于预测新数据的类别。

相关推荐
小鸡吃米…5 分钟前
机器学习所需技能
人工智能·机器学习
m5655bj8 分钟前
通过 Python 提取 PDF 表格数据
服务器·python·pdf
玄同76511 分钟前
面向对象编程 vs 其他编程范式:LLM 开发该选哪种?
大数据·开发语言·前端·人工智能·python·自然语言处理·知识图谱
南_山无梅落13 分钟前
PyCharm 安装了库却无法 Alt + Enter 导入?(简洁排查版)
ide·python·pycharm·虚拟环境·alt·enter·.venv
ID_1800790547318 分钟前
Python采集闲鱼商品详情API:JSON数据解析与应用实践
数据库·python·json
APIshop22 分钟前
API 接口文档测试:从“能跑”到“敢上线”的完整闭环
爬虫·python
AndrewHZ22 分钟前
【复杂网络分析】如何入门Louvain算法?
python·算法·复杂网络·社区发现·community det·louvain算法·图挖掘
淡酒交魂24 分钟前
「LangChain学习」ChatPromptTemplate学习笔记
机器学习·langchain
沈浩(种子思维作者)26 分钟前
梦境意识之谜——豆包补充
人工智能·python·量子计算
盼哥PyAI实验室37 分钟前
[特殊字符]️ 实战爬虫:Python 抓取【采购公告】接口数据(含踩坑解析)
开发语言·爬虫·python