机器学习-逻辑回归原理及其公式

逻辑回归(Logistic Regression)是一种广泛应用于分类任务的统计学方法,尤其是在二分类问题中表现尤为突出。尽管它的名字中包含"回归",但实际上逻辑回归是一种分类算法。逻辑回归的目标是预测一个样本属于某一类别的概率,而不是预测一个连续值。

逻辑回归原理

逻辑回归的核心在于使用 Sigmoid 函数(也称为 Logistic 函数)来将线性回归的输出映射到 [0, 1] 之间的概率值。这个函数具有 S 形状,可以将任何实数映射到 [0, 1] 之间,非常适合用来表示概率。

Sigmoid 函数

Sigmoid 函数的数学表达式为:

其中 zz 是输入值,σ(z)σ(z) 是经过 Sigmoid 函数后的输出值。这个函数的特点是随着 zz 的增加,σ(z)σ(z) 逐渐接近 1;随着 zz 的减小,σ(z)σ(z) 逐渐接近 0。

模型表达式

逻辑回归模型的表达式可以表示为:

其中:

  • ww 是权重向量,每个特征对应一个权重;
  • xx 是输入特征向量;
  • bb 是偏置项;
  • P(y=1∣x)P(y=1∣x) 表示给定输入 xx 时,目标变量 yy 为 1 的概率。

损失函数

逻辑回归通常使用交叉熵损失函数(Cross-Entropy Loss)来衡量模型的预测结果与真实标签之间的差距。对于二分类问题,损失函数可以定义为:

其中:

梯度下降法

为了最小化损失函数,逻辑回归通常采用梯度下降法来更新权重向量 𝑤和偏置项 𝑏。梯度下降法的基本步骤如下:

  • 初始化权重向量 𝑤和偏置项 𝑏;
  • 计算损失函数关于 𝑤和 𝑏的梯度;
  • 更新 𝑤和 𝑏:

其中 α 是学习率,决定了每次更新的步长。

示例计算梯度

对于权重向量 𝑤,损失函数的梯度为:

对于偏置项 𝑏,损失函数的梯度为:

通过不断迭代更新 w 和 b,直到损失函数收敛或者达到预定的最大迭代次数。

总结

逻辑回归是一种基于 Sigmoid 函数的概率模型,用于解决分类问题。它通过最小化交叉熵损失函数来学习最优的权重向量和偏置项。通过梯度下降法不断更新模型参数,使得模型能够更好地拟合训练数据,并用于预测新数据的类别。

相关推荐
gCode Teacher 格码致知1 小时前
Python基础教学:Python的openpyxl和python-docx模块结合Excel和Word模板进行数据写入-由Deepseek产生
python·excel
Destiny_where3 小时前
Agent平台-RAGFlow(2)-源码安装
python·ai
molunnnn4 小时前
第四章 Agent的几种经典范式
开发语言·python
linuxxx1105 小时前
django测试缓存命令的解读
python·缓存·django
毕设源码-邱学长7 小时前
【开题答辩全过程】以 基于Python的Bilibili平台数据分析与可视化实现为例,包含答辩的问题和答案
开发语言·python·数据分析
咚咚王者7 小时前
人工智能之编程进阶 Python高级:第十一章 过渡项目
开发语言·人工智能·python
A尘埃7 小时前
大模型应用python+Java后端+Vue前端的整合
java·前端·python
A尘埃8 小时前
LLM大模型评估攻略
开发语言·python
一晌小贪欢8 小时前
【Python办公】处理 CSV和Excel 文件操作指南
开发语言·python·excel·excel操作·python办公·csv操作