机器学习-逻辑回归原理及其公式

逻辑回归(Logistic Regression)是一种广泛应用于分类任务的统计学方法,尤其是在二分类问题中表现尤为突出。尽管它的名字中包含"回归",但实际上逻辑回归是一种分类算法。逻辑回归的目标是预测一个样本属于某一类别的概率,而不是预测一个连续值。

逻辑回归原理

逻辑回归的核心在于使用 Sigmoid 函数(也称为 Logistic 函数)来将线性回归的输出映射到 [0, 1] 之间的概率值。这个函数具有 S 形状,可以将任何实数映射到 [0, 1] 之间,非常适合用来表示概率。

Sigmoid 函数

Sigmoid 函数的数学表达式为:

其中 zz 是输入值,σ(z)σ(z) 是经过 Sigmoid 函数后的输出值。这个函数的特点是随着 zz 的增加,σ(z)σ(z) 逐渐接近 1;随着 zz 的减小,σ(z)σ(z) 逐渐接近 0。

模型表达式

逻辑回归模型的表达式可以表示为:

其中:

  • ww 是权重向量,每个特征对应一个权重;
  • xx 是输入特征向量;
  • bb 是偏置项;
  • P(y=1∣x)P(y=1∣x) 表示给定输入 xx 时,目标变量 yy 为 1 的概率。

损失函数

逻辑回归通常使用交叉熵损失函数(Cross-Entropy Loss)来衡量模型的预测结果与真实标签之间的差距。对于二分类问题,损失函数可以定义为:

其中:

梯度下降法

为了最小化损失函数,逻辑回归通常采用梯度下降法来更新权重向量 𝑤和偏置项 𝑏。梯度下降法的基本步骤如下:

  • 初始化权重向量 𝑤和偏置项 𝑏;
  • 计算损失函数关于 𝑤和 𝑏的梯度;
  • 更新 𝑤和 𝑏:

其中 α 是学习率,决定了每次更新的步长。

示例计算梯度

对于权重向量 𝑤,损失函数的梯度为:

对于偏置项 𝑏,损失函数的梯度为:

通过不断迭代更新 w 和 b,直到损失函数收敛或者达到预定的最大迭代次数。

总结

逻辑回归是一种基于 Sigmoid 函数的概率模型,用于解决分类问题。它通过最小化交叉熵损失函数来学习最优的权重向量和偏置项。通过梯度下降法不断更新模型参数,使得模型能够更好地拟合训练数据,并用于预测新数据的类别。

相关推荐
nju_spy7 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
心情好的小球藻26 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
星座52828 分钟前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
都叫我大帅哥28 分钟前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
惜.己38 分钟前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json
都叫我大帅哥2 小时前
Python的Optional:让你的代码优雅处理“空值”危机
python
曾几何时`4 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j
石迹耿千秋6 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
写写闲篇儿6 小时前
Python+MongoDB高效开发组合
linux·python·mongodb
杭州杭州杭州7 小时前
Python笔记
开发语言·笔记·python