机器学习-逻辑回归原理及其公式

逻辑回归(Logistic Regression)是一种广泛应用于分类任务的统计学方法,尤其是在二分类问题中表现尤为突出。尽管它的名字中包含"回归",但实际上逻辑回归是一种分类算法。逻辑回归的目标是预测一个样本属于某一类别的概率,而不是预测一个连续值。

逻辑回归原理

逻辑回归的核心在于使用 Sigmoid 函数(也称为 Logistic 函数)来将线性回归的输出映射到 [0, 1] 之间的概率值。这个函数具有 S 形状,可以将任何实数映射到 [0, 1] 之间,非常适合用来表示概率。

Sigmoid 函数

Sigmoid 函数的数学表达式为:

其中 zz 是输入值,σ(z)σ(z) 是经过 Sigmoid 函数后的输出值。这个函数的特点是随着 zz 的增加,σ(z)σ(z) 逐渐接近 1;随着 zz 的减小,σ(z)σ(z) 逐渐接近 0。

模型表达式

逻辑回归模型的表达式可以表示为:

其中:

  • ww 是权重向量,每个特征对应一个权重;
  • xx 是输入特征向量;
  • bb 是偏置项;
  • P(y=1∣x)P(y=1∣x) 表示给定输入 xx 时,目标变量 yy 为 1 的概率。

损失函数

逻辑回归通常使用交叉熵损失函数(Cross-Entropy Loss)来衡量模型的预测结果与真实标签之间的差距。对于二分类问题,损失函数可以定义为:

其中:

梯度下降法

为了最小化损失函数,逻辑回归通常采用梯度下降法来更新权重向量 𝑤和偏置项 𝑏。梯度下降法的基本步骤如下:

  • 初始化权重向量 𝑤和偏置项 𝑏;
  • 计算损失函数关于 𝑤和 𝑏的梯度;
  • 更新 𝑤和 𝑏:

其中 α 是学习率,决定了每次更新的步长。

示例计算梯度

对于权重向量 𝑤,损失函数的梯度为:

对于偏置项 𝑏,损失函数的梯度为:

通过不断迭代更新 w 和 b,直到损失函数收敛或者达到预定的最大迭代次数。

总结

逻辑回归是一种基于 Sigmoid 函数的概率模型,用于解决分类问题。它通过最小化交叉熵损失函数来学习最优的权重向量和偏置项。通过梯度下降法不断更新模型参数,使得模型能够更好地拟合训练数据,并用于预测新数据的类别。

相关推荐
jiang_changsheng7 分钟前
RTX 2080 Ti魔改22GB显卡的最优解ComfyUI教程
python·comfyui
0思必得01 小时前
[Web自动化] Selenium处理滚动条
前端·爬虫·python·selenium·自动化
2501_924878731 小时前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划
沈浩(种子思维作者)1 小时前
系统要活起来就必须开放包容去中心化
人工智能·python·flask·量子计算
2301_790300961 小时前
Python数据库操作:SQLAlchemy ORM指南
jvm·数据库·python
m0_736919101 小时前
用Pandas处理时间序列数据(Time Series)
jvm·数据库·python
getapi1 小时前
实时音视频传输与屏幕共享(投屏)
python
java干货2 小时前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
机器懒得学习2 小时前
智能股票分析系统
python·深度学习·金融
毕设源码-郭学长2 小时前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析