机器学习-逻辑回归原理及其公式

逻辑回归(Logistic Regression)是一种广泛应用于分类任务的统计学方法,尤其是在二分类问题中表现尤为突出。尽管它的名字中包含"回归",但实际上逻辑回归是一种分类算法。逻辑回归的目标是预测一个样本属于某一类别的概率,而不是预测一个连续值。

逻辑回归原理

逻辑回归的核心在于使用 Sigmoid 函数(也称为 Logistic 函数)来将线性回归的输出映射到 [0, 1] 之间的概率值。这个函数具有 S 形状,可以将任何实数映射到 [0, 1] 之间,非常适合用来表示概率。

Sigmoid 函数

Sigmoid 函数的数学表达式为:

其中 zz 是输入值,σ(z)σ(z) 是经过 Sigmoid 函数后的输出值。这个函数的特点是随着 zz 的增加,σ(z)σ(z) 逐渐接近 1;随着 zz 的减小,σ(z)σ(z) 逐渐接近 0。

模型表达式

逻辑回归模型的表达式可以表示为:

其中:

  • ww 是权重向量,每个特征对应一个权重;
  • xx 是输入特征向量;
  • bb 是偏置项;
  • P(y=1∣x)P(y=1∣x) 表示给定输入 xx 时,目标变量 yy 为 1 的概率。

损失函数

逻辑回归通常使用交叉熵损失函数(Cross-Entropy Loss)来衡量模型的预测结果与真实标签之间的差距。对于二分类问题,损失函数可以定义为:

其中:

梯度下降法

为了最小化损失函数,逻辑回归通常采用梯度下降法来更新权重向量 𝑤和偏置项 𝑏。梯度下降法的基本步骤如下:

  • 初始化权重向量 𝑤和偏置项 𝑏;
  • 计算损失函数关于 𝑤和 𝑏的梯度;
  • 更新 𝑤和 𝑏:

其中 α 是学习率,决定了每次更新的步长。

示例计算梯度

对于权重向量 𝑤,损失函数的梯度为:

对于偏置项 𝑏,损失函数的梯度为:

通过不断迭代更新 w 和 b,直到损失函数收敛或者达到预定的最大迭代次数。

总结

逻辑回归是一种基于 Sigmoid 函数的概率模型,用于解决分类问题。它通过最小化交叉熵损失函数来学习最优的权重向量和偏置项。通过梯度下降法不断更新模型参数,使得模型能够更好地拟合训练数据,并用于预测新数据的类别。

相关推荐
长鸳词羡几秒前
LoRA微调
人工智能·深度学习·机器学习
扶尔魔ocy5 分钟前
python 部署可离线使用的中文识别OCR(window)
python·中文识别·cnocr
一晌小贪欢17 分钟前
Python爬虫第4课:XPath与lxml高级解析技术
开发语言·爬虫·python·网络爬虫·python爬虫·python3·python办公
虚行21 分钟前
C#项目连接S7-PLCSIM Advanced读写操作
开发语言·python·c#
不太会写25 分钟前
又开始了 小程序定制
vue.js·spring boot·python·小程序
koo3641 小时前
李宏毅机器学习笔记17
人工智能·笔记·机器学习
好家伙VCC1 小时前
**发散创新:探索群体智能编程中的新境界**随着科技的飞速发展,群体智能逐渐成为编程领域的一大研究热点。本文将深入探讨群体智能的概念、优
java·python·科技
sensen_kiss1 小时前
INT305 Machine Learning 机器学习 Pt.4
人工智能·机器学习
WWZZ20252 小时前
快速上手大模型:机器学习1
人工智能·深度学习·机器学习·计算机视觉·机器人·slam