nnunetv2系列:查看命令对应的函数

nnunetv2系列:查看命令对应的函数

nnUNet\pyproject.toml文件中定义了入口函数。

bash 复制代码
nnUNetv2_plan_and_preprocess = "nnunetv2.experiment_planning.plan_and_preprocess_entrypoints:plan_and_preprocess_entry"
nnUNetv2_extract_fingerprint = "nnunetv2.experiment_planning.plan_and_preprocess_entrypoints:extract_fingerprint_entry"
nnUNetv2_plan_experiment = "nnunetv2.experiment_planning.plan_and_preprocess_entrypoints:plan_experiment_entry"
nnUNetv2_preprocess = "nnunetv2.experiment_planning.plan_and_preprocess_entrypoints:preprocess_entry"
nnUNetv2_train = "nnunetv2.run.run_training:run_training_entry"
nnUNetv2_predict_from_modelfolder = "nnunetv2.inference.predict_from_raw_data:predict_entry_point_modelfolder"
nnUNetv2_predict = "nnunetv2.inference.predict_from_raw_data:predict_entry_point"
nnUNetv2_convert_old_nnUNet_dataset = "nnunetv2.dataset_conversion.convert_raw_dataset_from_old_nnunet_format:convert_entry_point"
nnUNetv2_find_best_configuration = "nnunetv2.evaluation.find_best_configuration:find_best_configuration_entry_point"
nnUNetv2_determine_postprocessing = "nnunetv2.postprocessing.remove_connected_components:entry_point_determine_postprocessing_folder"
nnUNetv2_apply_postprocessing = "nnunetv2.postprocessing.remove_connected_components:entry_point_apply_postprocessing"
nnUNetv2_ensemble = "nnunetv2.ensembling.ensemble:entry_point_ensemble_folders"
nnUNetv2_accumulate_crossval_results = "nnunetv2.evaluation.find_best_configuration:accumulate_crossval_results_entry_point"
nnUNetv2_plot_overlay_pngs = "nnunetv2.utilities.overlay_plots:entry_point_generate_overlay"
nnUNetv2_download_pretrained_model_by_url = "nnunetv2.model_sharing.entry_points:download_by_url"
nnUNetv2_install_pretrained_model_from_zip = "nnunetv2.model_sharing.entry_points:install_from_zip_entry_point"
nnUNetv2_export_model_to_zip = "nnunetv2.model_sharing.entry_points:export_pretrained_model_entry"
nnUNetv2_move_plans_between_datasets = "nnunetv2.experiment_planning.plans_for_pretraining.move_plans_between_datasets:entry_point_move_plans_between_datasets"
nnUNetv2_evaluate_folder = "nnunetv2.evaluation.evaluate_predictions:evaluate_folder_entry_point"
nnUNetv2_evaluate_simple = "nnunetv2.evaluation.evaluate_predictions:evaluate_simple_entry_point"
nnUNetv2_convert_MSD_dataset = "nnunetv2.dataset_conversion.convert_MSD_dataset:entry_point"
相关推荐
KuaFuAI4 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic13 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI18 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海21 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah21 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d25 分钟前
边缘计算的学习
人工智能·学习·边缘计算
simple_ssn25 分钟前
【C语言刷力扣】1502.判断能否形成等差数列
c语言·算法·leetcode
风之馨技术录29 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
寂静山林34 分钟前
UVa 11855 Buzzwords
算法
Curry_Math38 分钟前
LeetCode 热题100之技巧关卡
算法·leetcode