机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据点分为 K 个不同的聚类。下面是对 K-均值聚类算法及其优缺点的讲解:

算法步骤:

  1. 随机选择 K 个初始聚类中心。
  2. 将每个数据点分配到最近的聚类中心。
  3. 更新每个聚类的中心,将其设置为该聚类包含的所有数据点的平均值。
  4. 重复步骤 2 和 3,直到聚类中心不再变化或达到预定义的收敛条件。

优点:

  1. 简单而直观,易于实现和理解。
  2. 可用于大型数据集,具有较高的可伸缩性。
  3. 适用于发现球状簇。

缺点:

  1. 对于非球状簇、不同大小的簇和噪声数据的处理效果较差。
  2. 对初始聚类中心的选择较为敏感,可能会导致收敛到局部最优解。
  3. 需要预先指定聚类的数量 K,这对于没有先验知识的情况下可能是困难的。

总结:K-均值聚类是一种简单而常用的聚类算法,适用于大型数据集和球状簇。然而,它的效果可能会受到初始聚类中心的选择和对 K 的预设值的敏感性,且在处理非球状簇、不同大小的簇和噪声数据时效果较差。

相关推荐
王哈哈^_^8 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
studytosky10 小时前
深度学习理论与实战:Pytorch基础入门
人工智能·pytorch·python·深度学习·机器学习
iiiiii1110 小时前
【论文阅读笔记】多实例学习方法 Diverse Density(DD):在特征空间中寻找正概念的坐标
论文阅读·人工智能·笔记·机器学习·ai·学习方法·多实例学习
z***y86211 小时前
机器学习重点
人工智能·机器学习
胖达不服输16 小时前
「日拱一码」155 小提琴图
人工智能·机器学习·绘图·小提琴图
计算机软件程序设计17 小时前
基于Python的新能源汽车销量数据分析与预测系统设计与实现
python·机器学习·数据分析·销量预测
z樾18 小时前
BenchMARL-前置TorchRL4
人工智能·python·机器学习
老鱼说AI18 小时前
PyTorch 深度强化学习实战:从零手写 PPO 算法训练你的月球着陆器智能体
人工智能·pytorch·深度学习·机器学习·计算机视觉·分类·回归
西猫雷婶18 小时前
CNN全连接层
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
大千AI助手18 小时前
二叉树:机器学习中不可或缺的数据结构
数据结构·人工智能·机器学习·二叉树·tree·大千ai助手·非线性数据结构