机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据点分为 K 个不同的聚类。下面是对 K-均值聚类算法及其优缺点的讲解:

算法步骤:

  1. 随机选择 K 个初始聚类中心。
  2. 将每个数据点分配到最近的聚类中心。
  3. 更新每个聚类的中心,将其设置为该聚类包含的所有数据点的平均值。
  4. 重复步骤 2 和 3,直到聚类中心不再变化或达到预定义的收敛条件。

优点:

  1. 简单而直观,易于实现和理解。
  2. 可用于大型数据集,具有较高的可伸缩性。
  3. 适用于发现球状簇。

缺点:

  1. 对于非球状簇、不同大小的簇和噪声数据的处理效果较差。
  2. 对初始聚类中心的选择较为敏感,可能会导致收敛到局部最优解。
  3. 需要预先指定聚类的数量 K,这对于没有先验知识的情况下可能是困难的。

总结:K-均值聚类是一种简单而常用的聚类算法,适用于大型数据集和球状簇。然而,它的效果可能会受到初始聚类中心的选择和对 K 的预设值的敏感性,且在处理非球状簇、不同大小的簇和噪声数据时效果较差。

相关推荐
0***K89215 分钟前
前端机器学习
人工智能·机器学习
陈天伟教授18 分钟前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
@sinner3 小时前
你好,Scikit-learn:从零开始你的第一个机器学习项目
python·机器学习·scikit-learn
Jay20021114 小时前
【机器学习】7-9 分类任务 & 逻辑回归的成本函数 & 逻辑回归的梯度下降
笔记·机器学习·分类
Christo37 小时前
AAAI-2024《Multi-Class Support Vector Machine with Maximizing Minimum Margin》
人工智能·算法·机器学习·支持向量机·数据挖掘
XINVRY-FPGA8 小时前
XCVU9P-2FLGC2104I Xilinx AMD Virtex UltraScale+ FPGA
嵌入式硬件·机器学习·计算机视觉·fpga开发·硬件工程·dsp开发·fpga
iMG9 小时前
当自动驾驶技术遭遇【电车难题】,专利制度如何处理?
人工智能·科技·机器学习·自动驾驶·创业创新
ekprada9 小时前
DAY 18 推断聚类后簇的类型
算法·机器学习·支持向量机
vvoennvv10 小时前
【Python TensorFlow】 TCN-LSTM时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·机器学习·tensorflow·lstm·tcn
小殊小殊11 小时前
【论文笔记】知识蒸馏的全面综述
人工智能·算法·机器学习