机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据点分为 K 个不同的聚类。下面是对 K-均值聚类算法及其优缺点的讲解:

算法步骤:

  1. 随机选择 K 个初始聚类中心。
  2. 将每个数据点分配到最近的聚类中心。
  3. 更新每个聚类的中心,将其设置为该聚类包含的所有数据点的平均值。
  4. 重复步骤 2 和 3,直到聚类中心不再变化或达到预定义的收敛条件。

优点:

  1. 简单而直观,易于实现和理解。
  2. 可用于大型数据集,具有较高的可伸缩性。
  3. 适用于发现球状簇。

缺点:

  1. 对于非球状簇、不同大小的簇和噪声数据的处理效果较差。
  2. 对初始聚类中心的选择较为敏感,可能会导致收敛到局部最优解。
  3. 需要预先指定聚类的数量 K,这对于没有先验知识的情况下可能是困难的。

总结:K-均值聚类是一种简单而常用的聚类算法,适用于大型数据集和球状簇。然而,它的效果可能会受到初始聚类中心的选择和对 K 的预设值的敏感性,且在处理非球状簇、不同大小的簇和噪声数据时效果较差。

相关推荐
倔强的石头10620 分钟前
什么是机器学习?—— 用 “买西瓜” 讲透核心逻辑
人工智能·机器学习
打破砂锅问到底0071 小时前
Claude--AI领域的安全优等生
大数据·人工智能·机器学习·ai
武子康1 小时前
大数据-211 逻辑回归的 Scikit-Learn 实现:max_iter、分类方式与多元回归的优化方法
大数据·后端·机器学习
Java后端的Ai之路1 小时前
【阿里AI大赛】-二手车价格预测使用五折交叉验证
人工智能·深度学习·机器学习·二手车价格预测·天池
木头程序员1 小时前
机器学习核心知识点汇总
大数据·人工智能·机器学习·kmeans·近邻算法
张祥6422889041 小时前
误差理论与测量平差基础四
人工智能·机器学习·概率论
知乎的哥廷根数学学派2 小时前
基于高阶统计量引导的小波自适应块阈值地震信号降噪算法(MATLAB)
网络·人工智能·pytorch·深度学习·算法·机器学习·matlab
光羽隹衡2 小时前
机器学习——自然语言处理之关键词提取任务(TF-IDF)
机器学习·自然语言处理·tf-idf
Yeats_Liao2 小时前
昇腾910B与DeepSeek:国产算力与开源模型的架构适配分析
人工智能·python·深度学习·神经网络·机器学习·架构·开源
Pyeako2 小时前
机器学习--TF-IDF&红楼梦案例
机器学习·nlp·tf-idf·红楼梦·自然语言学习