机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据点分为 K 个不同的聚类。下面是对 K-均值聚类算法及其优缺点的讲解:

算法步骤:

  1. 随机选择 K 个初始聚类中心。
  2. 将每个数据点分配到最近的聚类中心。
  3. 更新每个聚类的中心,将其设置为该聚类包含的所有数据点的平均值。
  4. 重复步骤 2 和 3,直到聚类中心不再变化或达到预定义的收敛条件。

优点:

  1. 简单而直观,易于实现和理解。
  2. 可用于大型数据集,具有较高的可伸缩性。
  3. 适用于发现球状簇。

缺点:

  1. 对于非球状簇、不同大小的簇和噪声数据的处理效果较差。
  2. 对初始聚类中心的选择较为敏感,可能会导致收敛到局部最优解。
  3. 需要预先指定聚类的数量 K,这对于没有先验知识的情况下可能是困难的。

总结:K-均值聚类是一种简单而常用的聚类算法,适用于大型数据集和球状簇。然而,它的效果可能会受到初始聚类中心的选择和对 K 的预设值的敏感性,且在处理非球状簇、不同大小的簇和噪声数据时效果较差。

相关推荐
songyuc13 小时前
【Qwen】DataArguments说明
深度学习·算法·机器学习
2401_8414956413 小时前
【机器学习】电商销售额预测实战
人工智能·python·机器学习·数据清洗·矩阵分解·特征可视化·模型训练评估
漂洋过海的鱼儿13 小时前
机器学习-K临近算法(1)
机器学习
辰尘_星启14 小时前
[最优控制]MPC模型预测控制
线性代数·机器学习·机器人·概率论·控制·现代控制
亚里随笔14 小时前
相对优势估计存在偏差——揭示群体相对强化学习中的系统性偏差问题
人工智能·深度学习·机器学习·llm·agentic·rlvr
2501_9481201516 小时前
基于机器学习的网络异常检测与响应技术研究
网络·机器学习·php
机器学习之心17 小时前
Stacking集成传统机器学习模型与新型KAN网络回归预测+五模型回归对比
人工智能·机器学习·回归·stacking集成·kan网络回归预测
szcsun517 小时前
机器学习(三)--分类问题
人工智能·机器学习·分类
汽车仪器仪表相关领域18 小时前
一表双显+±1%精度:MTX-D数字油压温度计赛车/改装车发动机监测实战全解
大数据·网络·数据库·人工智能·机器学习·单元测试·可用性测试
玄同76519 小时前
SQLAlchemy 模型定义完全指南:从基础到进阶的 ORM 实战
人工智能·python·sql·mysql·机器学习·自然语言处理·database