机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类是一种常用的无监督学习算法,用于将数据点分为 K 个不同的聚类。下面是对 K-均值聚类算法及其优缺点的讲解:

算法步骤:

  1. 随机选择 K 个初始聚类中心。
  2. 将每个数据点分配到最近的聚类中心。
  3. 更新每个聚类的中心,将其设置为该聚类包含的所有数据点的平均值。
  4. 重复步骤 2 和 3,直到聚类中心不再变化或达到预定义的收敛条件。

优点:

  1. 简单而直观,易于实现和理解。
  2. 可用于大型数据集,具有较高的可伸缩性。
  3. 适用于发现球状簇。

缺点:

  1. 对于非球状簇、不同大小的簇和噪声数据的处理效果较差。
  2. 对初始聚类中心的选择较为敏感,可能会导致收敛到局部最优解。
  3. 需要预先指定聚类的数量 K,这对于没有先验知识的情况下可能是困难的。

总结:K-均值聚类是一种简单而常用的聚类算法,适用于大型数据集和球状簇。然而,它的效果可能会受到初始聚类中心的选择和对 K 的预设值的敏感性,且在处理非球状簇、不同大小的簇和噪声数据时效果较差。

相关推荐
weixin_395448911 小时前
排查流程啊啊啊
人工智能·深度学习·机器学习
DN20201 小时前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
香芋Yu2 小时前
【机器学习教程】第02章:线性代数基础【下】
学习·机器学习
困死了11113 小时前
KAG: Boosting LLMs in Professional Domains viaKnowledge Augmented Generation
机器学习
m0_603888713 小时前
FineInstructions Scaling Synthetic Instructions to Pre-Training Scale
人工智能·深度学习·机器学习·ai·论文速览
EmmaXLZHONG3 小时前
Reinforce Learning Concept Flow Chart (强化学习概念流程图)
人工智能·深度学习·机器学习·流程图
Candice Can3 小时前
【机器学习】吴恩达机器学习Lecture2-Linear regression with one variable
人工智能·机器学习·线性回归·吴恩达机器学习
淮北4943 小时前
Reinforce算法
人工智能·机器学习
小鸡吃米…3 小时前
机器学习 - 高斯判别分析(Gaussian Discriminant Analysis)
人工智能·深度学习·机器学习
香芋Yu3 小时前
【机器学习教程】第01章:机器学习概览
人工智能·机器学习