[机器学习]聚类算法

1 聚类算法简介

python 复制代码
# 导包
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score
# 构建数据
x,y=make_blobs(n_samples=1000,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.3],random_state=22)

plt.scatter(x[:,0],x[:,1])
plt.show()
python 复制代码
# 聚类
model=KMeans(n_clusters=3,random_state=22)
model.fit(x)
y_pred=model.predict(x)
# 可视化
plt.scatter(x[:,0],x[:,1],c=y_pred)
plt.show()
# 评估
print(calinski_harabasz_score(x,y_pred))

2 KMeans实现流程

3 模型评估方法

3.1 SSE聚类评估指标

python 复制代码
import os
os.environ['OMP_NUM_THREADS'] = '1'
# 导包
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score
# 构建数据
x,y=make_blobs(n_samples=1000,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.3],random_state=22)

sse=[]
# 计算不同K值下的SSE,来获取K值
for k in range(1,51):
    km=KMeans(n_clusters=k,max_iter=100,random_state=22)
    km.fit(x)
    sse.append(km.inertia_)

plt.plot(range(1,51),sse)
plt.grid()
plt.show()

3.2 SC聚类评估指标

python 复制代码
# 计算SC系数
import os
os.environ['OMP_NUM_THREADS'] = '1'
# 导包
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score,silhouette_score
# 构建数据
x,y=make_blobs(n_samples=1000,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.3],random_state=22)

sc=[]
# 计算不同K值下的SSE,来获取K值
for k in range(2,51):
    km=KMeans(n_clusters=k,max_iter=100,random_state=22)
    y_pred=km.fit_predict(x)
    sc_=silhouette_score(x,y_pred)
    sc.append(sc_)

plt.plot(range(2,51),sc)
plt.grid()
plt.show()

3.3 CH聚类评估指标

相关推荐
老艾的AI世界8 分钟前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221519 分钟前
机器学习系列----关联分析
人工智能·机器学习
liujjjiyun11 分钟前
小R的随机播放顺序
数据结构·c++·算法
¥ 多多¥22 分钟前
c++中mystring运算符重载
开发语言·c++·算法
FreedomLeo11 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
风间琉璃""1 小时前
二进制与网络安全的关系
安全·机器学习·网络安全·逆向·二进制
trueEve1 小时前
SQL,力扣题目1369,获取最近第二次的活动
算法·leetcode·职场和发展
天若有情6731 小时前
c++框架设计展示---提高开发效率!
java·c++·算法
ahadee1 小时前
蓝桥杯每日真题 - 第19天
c语言·vscode·算法·蓝桥杯
Reese_Cool2 小时前
【数据结构与算法】排序
java·c语言·开发语言·数据结构·c++·算法·排序算法