[机器学习]聚类算法

1 聚类算法简介

python 复制代码
# 导包
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score
# 构建数据
x,y=make_blobs(n_samples=1000,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.3],random_state=22)

plt.scatter(x[:,0],x[:,1])
plt.show()
python 复制代码
# 聚类
model=KMeans(n_clusters=3,random_state=22)
model.fit(x)
y_pred=model.predict(x)
# 可视化
plt.scatter(x[:,0],x[:,1],c=y_pred)
plt.show()
# 评估
print(calinski_harabasz_score(x,y_pred))

2 KMeans实现流程

3 模型评估方法

3.1 SSE聚类评估指标

python 复制代码
import os
os.environ['OMP_NUM_THREADS'] = '1'
# 导包
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score
# 构建数据
x,y=make_blobs(n_samples=1000,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.3],random_state=22)

sse=[]
# 计算不同K值下的SSE,来获取K值
for k in range(1,51):
    km=KMeans(n_clusters=k,max_iter=100,random_state=22)
    km.fit(x)
    sse.append(km.inertia_)

plt.plot(range(1,51),sse)
plt.grid()
plt.show()

3.2 SC聚类评估指标

python 复制代码
# 计算SC系数
import os
os.environ['OMP_NUM_THREADS'] = '1'
# 导包
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score,silhouette_score
# 构建数据
x,y=make_blobs(n_samples=1000,n_features=2,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.2,0.2,0.3],random_state=22)

sc=[]
# 计算不同K值下的SSE,来获取K值
for k in range(2,51):
    km=KMeans(n_clusters=k,max_iter=100,random_state=22)
    y_pred=km.fit_predict(x)
    sc_=silhouette_score(x,y_pred)
    sc.append(sc_)

plt.plot(range(2,51),sc)
plt.grid()
plt.show()

3.3 CH聚类评估指标

相关推荐
悠哉悠哉愿意1 分钟前
【数学建模学习笔记】机器学习分类:KNN分类
学习·机器学习·数学建模
ningmengjing_3 分钟前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
nju_spy1 小时前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州1 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
j_xxx404_1 小时前
数据结构:栈和队列力扣算法题
c语言·数据结构·算法·leetcode·链表
南莺莺1 小时前
假设一个算术表达式中包含圆括号、方括号和花括号3种类型的括号,编写一个算法来判别,表达式中的括号是否配对,以字符“\0“作为算术表达式的结束符
c语言·数据结构·算法·
THMAIL2 小时前
深度学习从入门到精通 - 神经网络核心原理:从生物神经元到数学模型蜕变
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
野犬寒鸦2 小时前
力扣hot100:旋转图像(48)(详细图解以及核心思路剖析)
java·数据结构·后端·算法·leetcode
墨染点香2 小时前
LeetCode 刷题【61. 旋转链表】
算法·leetcode·职场和发展
非门由也2 小时前
《sklearn机器学习——多标签排序指标》
人工智能·机器学习·sklearn