FPGA Prototyping vs Emulation

FPGA Prototyping vs. Emulation

One way to visualize the difference between Prototyping and Emulation is with a "spider chart" (named for its resemblance to a spider's web). The Prototyping vs. Emulation spider chart below highlights the differences between these two verification methods, which may be summarized as runtime speed, design capacity, and affordability -- all other differences, sometimes not insignificant, are "artifacts" of these three fundamental differences. Compilation speed is a function of design capacity -- the larger the design the longer the compilation time. Any simulator can be connected in-circuit to a hardware target system with the appropriate speed-buffers but the verification runtime speed is still limited by the simulation platform -- Emulation runtime speed is much faster than software simulation, and achievable Prototyping runtime speeds are much higher than Emulation runtime speeds. Likewise, any simulator can be used for software debug for periods of software execution -- the higher runtime speeds of Prototyping enable much longer periods of software execution therefor longer software debug sessions. And debug visibility could include every internal design node in a Prototype or Emulator -- but each design node probe is another internal wire connection in FPGA-based Prototyping and Emulation implementations, which impacts design capacity and runtime speed. Finally, reusability is a function of the customization of the Prototyping or Emulation platform needed to achieve the verification design capacity and runtime speed goals -- the more customized the platform is for the specific verification requirements, the less reusable it will be. The underlying Prototyping or Emulation hardware itself is infinitely reusable, but the design compilations, IP block adaptations, and external connections will have limited reusability.

What Can FPGA Prototyping or Emulation Do Best for You?

To summarize, FPGA Prototyping today is generally more affordable than Emulation, it can achieve much higher runtime speeds, and design capacity has been greatly expanded by today's leading-edge FPGA technology. Emulation, on the other hand comes with a higher cost of ownership, provides more simulation-like verification for design debug. In fact, if you can afford both Prototyping and Emulation, debug with Prototyping is usually limited to identifying and isolating design hardware/software problems over long periods of design operation which are then reproduced in Emulation for detailed debug. It is recommended that you be clear about your verification goals and priorities, you consider the skill set of your design team with respect to getting the best value from Prototyping and/or Emulation, do a quick ROI calculation on your verification tool investment, budget accordingly -- and only then proceed with a choice and deployment of FPGA Prototyping and/or Emulation.

S2C Can Help

S2C is a leading global supplier of FPGA prototyping solutions for today's innovative SoC and ASIC designs, now with the second largest share of the global prototyping market. S2C has been successfully delivering rapid SoC prototyping solutions since 2003. With over 500 customers, including 6 of the world's top 15 semiconductor companies, our world-class engineering team and customer-centric sales team are experts at addressing our customer's SoC and ASIC verification needs. S2C has offices and sales representatives in the US, Europe, mainland China, Hong Kong, Korea, and Japan.

相关推荐
FakeOccupational11 小时前
fpga系列 HDL : Microchip FPGA开发软件 Libero 中导出和导入引脚约束配置
fpga开发
贝塔实验室14 小时前
LDPC 码的构造方法
算法·fpga开发·硬件工程·动态规划·信息与通信·信号处理·基带工程
Moonnnn.18 小时前
【FPGA】时序逻辑计数器——仿真验证
fpga开发
三贝勒文子19 小时前
Synopsys 逻辑综合之 ICG
fpga开发·eda·synopsys·时序综合
byte轻骑兵20 小时前
【驱动设计的硬件基础】CPLD和FPGA
fpga开发·cpld
dadaobusi20 小时前
看到一段SVA代码,让AI解释了一下
单片机·嵌入式硬件·fpga开发
G2突破手25920 小时前
FMC、FMC+ 详解
fpga开发
fpga和matlab20 小时前
FPGA时序约束分析4——Reg2Reg路径的建立时间与保持时间分析
fpga开发·reg2reg·建立时间·保持时间
高沉20 小时前
2025华为海思数字IC面经
华为·fpga开发
伊宇韵20 小时前
FPGA - GTX收发器-K码 以及 IBERT IP核使用
fpga开发