FPGA Prototyping vs Emulation

FPGA Prototyping vs. Emulation

One way to visualize the difference between Prototyping and Emulation is with a "spider chart" (named for its resemblance to a spider's web). The Prototyping vs. Emulation spider chart below highlights the differences between these two verification methods, which may be summarized as runtime speed, design capacity, and affordability -- all other differences, sometimes not insignificant, are "artifacts" of these three fundamental differences. Compilation speed is a function of design capacity -- the larger the design the longer the compilation time. Any simulator can be connected in-circuit to a hardware target system with the appropriate speed-buffers but the verification runtime speed is still limited by the simulation platform -- Emulation runtime speed is much faster than software simulation, and achievable Prototyping runtime speeds are much higher than Emulation runtime speeds. Likewise, any simulator can be used for software debug for periods of software execution -- the higher runtime speeds of Prototyping enable much longer periods of software execution therefor longer software debug sessions. And debug visibility could include every internal design node in a Prototype or Emulator -- but each design node probe is another internal wire connection in FPGA-based Prototyping and Emulation implementations, which impacts design capacity and runtime speed. Finally, reusability is a function of the customization of the Prototyping or Emulation platform needed to achieve the verification design capacity and runtime speed goals -- the more customized the platform is for the specific verification requirements, the less reusable it will be. The underlying Prototyping or Emulation hardware itself is infinitely reusable, but the design compilations, IP block adaptations, and external connections will have limited reusability.

What Can FPGA Prototyping or Emulation Do Best for You?

To summarize, FPGA Prototyping today is generally more affordable than Emulation, it can achieve much higher runtime speeds, and design capacity has been greatly expanded by today's leading-edge FPGA technology. Emulation, on the other hand comes with a higher cost of ownership, provides more simulation-like verification for design debug. In fact, if you can afford both Prototyping and Emulation, debug with Prototyping is usually limited to identifying and isolating design hardware/software problems over long periods of design operation which are then reproduced in Emulation for detailed debug. It is recommended that you be clear about your verification goals and priorities, you consider the skill set of your design team with respect to getting the best value from Prototyping and/or Emulation, do a quick ROI calculation on your verification tool investment, budget accordingly -- and only then proceed with a choice and deployment of FPGA Prototyping and/or Emulation.

S2C Can Help

S2C is a leading global supplier of FPGA prototyping solutions for today's innovative SoC and ASIC designs, now with the second largest share of the global prototyping market. S2C has been successfully delivering rapid SoC prototyping solutions since 2003. With over 500 customers, including 6 of the world's top 15 semiconductor companies, our world-class engineering team and customer-centric sales team are experts at addressing our customer's SoC and ASIC verification needs. S2C has offices and sales representatives in the US, Europe, mainland China, Hong Kong, Korea, and Japan.

相关推荐
忙什么果10 小时前
上位机、下位机、FPGA、算法放在哪层合适?
算法·fpga开发
博览鸿蒙16 小时前
从迷茫自学到稳定入行:我的 FPGA 上岸全过程
fpga开发
芯门20 小时前
FPGA商用级ISP(二):镜头阴影校正(LSC)的网格增益插值与并行硬件架构实现
图像处理·fpga开发·isp
Felven21 小时前
corundum 40G开源网卡测试结果
fpga开发·性能测试·dds·开源网卡·mqnic
顾知行1 天前
ABB PC D230 3BHE022291R0101 励磁CCM测量板
fpga开发·abb·abb励磁
芯门1 天前
FPGA商用级ISP:动态坏点校正(DPCC)的滑窗架构与并行判决实现
图像处理·fpga开发·isp
碎碎思2 天前
双管齐下筑优势 AMD 扩容中端 FPGA 阵营并延至 2045 + 长期供货
fpga开发
绿算技术2 天前
【无标题】
数据库·人工智能·科技·算法·fpga开发·硬件架构
FPGA技术联盟2 天前
DO‑254 物理测试到底在“测什么”?
fpga开发
FPGA小c鸡2 天前
FPGA中的DSP与AI融合:从硬件加速到推理部署完全指南(附实战案例)
人工智能·fpga开发