FPGA Prototyping vs Emulation

FPGA Prototyping vs. Emulation

One way to visualize the difference between Prototyping and Emulation is with a "spider chart" (named for its resemblance to a spider's web). The Prototyping vs. Emulation spider chart below highlights the differences between these two verification methods, which may be summarized as runtime speed, design capacity, and affordability -- all other differences, sometimes not insignificant, are "artifacts" of these three fundamental differences. Compilation speed is a function of design capacity -- the larger the design the longer the compilation time. Any simulator can be connected in-circuit to a hardware target system with the appropriate speed-buffers but the verification runtime speed is still limited by the simulation platform -- Emulation runtime speed is much faster than software simulation, and achievable Prototyping runtime speeds are much higher than Emulation runtime speeds. Likewise, any simulator can be used for software debug for periods of software execution -- the higher runtime speeds of Prototyping enable much longer periods of software execution therefor longer software debug sessions. And debug visibility could include every internal design node in a Prototype or Emulator -- but each design node probe is another internal wire connection in FPGA-based Prototyping and Emulation implementations, which impacts design capacity and runtime speed. Finally, reusability is a function of the customization of the Prototyping or Emulation platform needed to achieve the verification design capacity and runtime speed goals -- the more customized the platform is for the specific verification requirements, the less reusable it will be. The underlying Prototyping or Emulation hardware itself is infinitely reusable, but the design compilations, IP block adaptations, and external connections will have limited reusability.

What Can FPGA Prototyping or Emulation Do Best for You?

To summarize, FPGA Prototyping today is generally more affordable than Emulation, it can achieve much higher runtime speeds, and design capacity has been greatly expanded by today's leading-edge FPGA technology. Emulation, on the other hand comes with a higher cost of ownership, provides more simulation-like verification for design debug. In fact, if you can afford both Prototyping and Emulation, debug with Prototyping is usually limited to identifying and isolating design hardware/software problems over long periods of design operation which are then reproduced in Emulation for detailed debug. It is recommended that you be clear about your verification goals and priorities, you consider the skill set of your design team with respect to getting the best value from Prototyping and/or Emulation, do a quick ROI calculation on your verification tool investment, budget accordingly -- and only then proceed with a choice and deployment of FPGA Prototyping and/or Emulation.

S2C Can Help

S2C is a leading global supplier of FPGA prototyping solutions for today's innovative SoC and ASIC designs, now with the second largest share of the global prototyping market. S2C has been successfully delivering rapid SoC prototyping solutions since 2003. With over 500 customers, including 6 of the world's top 15 semiconductor companies, our world-class engineering team and customer-centric sales team are experts at addressing our customer's SoC and ASIC verification needs. S2C has offices and sales representatives in the US, Europe, mainland China, Hong Kong, Korea, and Japan.

相关推荐
brave and determined3 小时前
可编程逻辑器件学习(day29):Verilog HDL可综合代码设计规范与实践指南
深度学习·fpga开发·verilog·fpga·设计规范·硬件编程·嵌入式设计
碎碎思2 天前
不用 JTAG 也能刷 FPGA:TinyFPGA-Bootloader 让比特流加载更简单
fpga开发
贝塔实验室2 天前
Altium Designer 6.0 初学教程-在Altium Designer 中对PCB 进行板层设置及内电层进行分割
嵌入式硬件·fpga开发·编辑器·硬件工程·信息与通信·信号处理·pcb工艺
ThreeYear_s2 天前
【FPGA+DSP系列】——MATLAB simulink单相PWM全控整流电路基础版
开发语言·matlab·fpga开发
forgeda2 天前
赛灵思FPGA的市场份额,要从2025年的55%,进一步提升到2030年的70%,凭什么?
ai·fpga开发
怀民民民2 天前
关于ADC
单片机·嵌入式硬件·fpga开发·adc·学习总结·模数转化
太爱学习了2 天前
步进电机sin曲线加速及FPGA实现
fpga开发·步进电机
尤老师FPGA2 天前
LVDS系列33:Xilinx 7系 ADC LVDS接口参考设计(四)
fpga开发
FPGA_无线通信2 天前
FPGA PCIE 包解析
fpga开发
Aaron15882 天前
通用的通感控算存一体化平台设计方案
linux·人工智能·算法·fpga开发·硬件工程·射频工程·基带工程