Spark-累加器Accumulator图文详解

Spark-Accumulator

Spark中的累加器是用于在分布式计算中进行全局统计的工具。它以用于累积一些数据,比如计数器或求和器。

累加器主要用于在集群中的所有任务完成后,合并这些任务的结果。

Spark支持多种类型的累加器,例如整数和浮点数,但要注意,它们只能由驱动程序读取,任务节点不能修改累加器的值。


累加器的"只写"特性

累加器在Spark中被设计为"只写"的。累加器的值只能被添加或更新,而不能被直接读取。

  1. 写入操作

    累加器的值只能通过add方法在分布式任务中更新。

    scala 复制代码
    accumulator.add(5)

    这种设计确保了累加器在多个任务并行执行时的线程安全和一致性。

  2. 读取操作

    累加器的最终值只能在驱动程序中读取,而不是在分布式任务中。

    scala 复制代码
    println(s"Accumulator value: ${accumulator.value}")

    这种设计是为了避免任务中的中间计算结果对累加器的读取,确保累加器的值只在任务执行结束后被汇总和读取。

scala 复制代码
var errorLines = sc.accumulator(0, "Error Lines")

sc.textFike("file.txt").foreach { line =>
    
	----   process lines ----
	
    if( error )
	    errorLines += 1

}

println(s"Lines with Bugs=${errorLines.value}");
相关推荐
武子康1 小时前
Java-72 深入浅出 RPC Dubbo 上手 生产者模块详解
java·spring boot·分布式·后端·rpc·dubbo·nio
橘子在努力5 小时前
【橘子分布式】Thrift RPC(理论篇)
分布式·网络协议·rpc
lifallen7 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
liupenglove7 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
沈健_算法小生9 小时前
基于SpringBoot3集成Kafka集群
分布式·kafka·linq
全能搬运大师10 小时前
win10安装Elasticsearch
大数据·elasticsearch·搜索引擎
Swift社区10 小时前
ELK、Loki、Kafka 三种日志告警联动方案全解析(附实战 Demo)
分布式·elk·kafka
Guheyunyi10 小时前
电气安全监测系统:筑牢电气安全防线
大数据·运维·网络·人工智能·安全·架构
BigData共享11 小时前
StarRocks fragment的执行流程
大数据
阿里云大数据AI技术11 小时前
阿里云 EMR Serverless Spark: 面向 Data+AI 的高性能 Lakehouse 产品
大数据·人工智能·数据分析