matlab处理函数3

1. 直方图均衡化的 Matlab 实现

1.1 imhist 函数

功能:计算和显示数字数字图像的色彩直方图

格式:imhist(I,n)

imhist(X,map)

说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色数字数字图像 X 的直方图,map为调色板。用stem(x,counts) 同样可以显示直方图。

1.2 imcontour 函数

功能:显示数字数字图像的等灰度值图

格式:imcontour(I,n),imcontour(I,v)

说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。

1.3 imadjust 函数

功能:通过直方图变换调整对比度

格式:J=imadjust(I,[low high],[bottomtop],gamma)

newmap=imadjust(map,[low high],[bottomtop],gamma)

说明:J=imadjust(I,[low high],[bottomtop],gamma) 其中,gamma 为校正量r,[lowhigh] 为原数字数字图像中要变换的灰度范围,[bottom top]

指定了变换后的灰度范围;newmap=imadjust(map,[lowhigh],[bottom top],gamma) 调整索引色数字数字图像的调色板 map 。此时若 [low high] 和

[bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。

1.4 histeq 函数

功能:直方图均衡化

格式:J=histeq(I,hgram)

J=histeq(I,n)

[J,T]=histeq(I,...)

newmap=histeq(X,map,hgram)

newmap=histeq(X,map)

[new,T]=histeq(X,...)

说明:J=histeq(I,hgram) 实现了所谓"直方图规定化",即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素

都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...)返回从能将数字数字图像 I 的灰度直方图变换成

数字数字图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色数字数字图像调色板的直方图均衡。

2. 噪声及其噪声的 Matlab 实现

imnoise 函数

格式:J=imnoise(I,type)

J=imnoise(I,type,parameter)

说明:J=imnoise(I,type) 返回对数字数字图像 I 添加典型噪声后的有噪数字数字图像 J ,参数type 和 parameter 用于确定噪声的类型和相应的参数。

3. 数字数字图像滤波的 Matlab 实现

3.1 conv2 函数

功能:计算二维卷积

格式:C=conv2(A,B)

C=conv2(Hcol,Hrow,A)

C=conv2(...,'shape')

说明:对于 C=conv2(A,B) ,conv2 的算矩阵A 和 B 的卷积,若[Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];

C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2

返回二维卷积结果部分,参数 shape 可取值如下:

》full为缺省值,返回二维卷积的全部结果;

》same返回二维卷积结果中与 A 大小相同的中间部分;

valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]。

3.2 conv 函数

功能:计算多维卷积

格式:与 conv2 函数相同

3.3 filter2函数

功能:计算二维线型数字滤波,它与函数 fspecial 连用

格式:Y=filter2(B,X)

Y=filter2(B,X,'shape')

说明:对于 Y=filter2(B,X) ,filter2 使用矩阵B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大

小与 X 一样;对于Y=filter2(B,X,'shape') ,filter2返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下

》full返回二维相关的全部结果,size(Y)>size(X);

》same返回二维互相关结果的中间部分,Y 与X 大小相同;

》valid返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X) 。

3.4 fspecial 函数

功能:产生预定义滤波器

格式:H=fspecial(type)

H=fspecial('gaussian',n,sigma) 高斯低通滤波器

H=fspecial('sobel') Sobel 水平边缘增强滤波器

H=fspecial('prewitt') Prewitt 水平边缘增强滤波器

H=fspecial('laplacian',alpha) 近似二维拉普拉斯运算滤波器

H=fspecial('log',n,sigma) 高斯拉普拉斯(LoG)运算滤波器

H=fspecial('average',n) 均值滤波器

H=fspecial('unsharp',alpha) 模糊对比增强滤波器

说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的H 常与其它滤波器搭配使用。

4. 彩色增强的 Matlab 实现

4.1 imfilter函数

功能:真彩色增强

格式:B=imfilter(A,h)

说明:将原始数字数字图像 A 按指定的滤波器 h 进行滤波增强处理,增强后的数字数字图像 B 与A 的尺寸和类型相同

相关推荐
好喜欢吃红柚子7 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python11 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯20 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠23 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon33 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~40 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨41 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画1 小时前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云1 小时前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓1 小时前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调