神经网络的可解释性理论及工具

1.可解释性分析简介

explainable AI:why,利用决策树

eg:

interpretable AI:how

2.机器学习的可解释性

解释工具:

按输入对输出的贡献值。

然后把值sigmoid成0-1.

例子:

就是去计算,有你和没你,能有多大区S别。

SHAP包 去搜一下用

单个样本的

全部样本的

3.图像识别的可解释性

相关推荐
lihuayong14 分钟前
LangGraph React智能体 - 推理与行动的完美结合
人工智能·langgraph·react 智能体
机器之心16 分钟前
Meta用40万个GPU小时做了一个实验,只为弄清强化学习Scaling Law
人工智能·openai
Mr.看海19 分钟前
机器学习鼻祖级算法——使用SVM实现多分类及Python实现
算法·机器学习·支持向量机
曾经的三心草19 分钟前
OpenCV5-图像特征harris-sift-特征匹配-图像全景拼接-答题卡识别判卷
人工智能·opencv·计算机视觉
慧星云33 分钟前
魔多 AI 支持 Wan 系列在线训练 :解锁视频生成新高度
人工智能
麻辣兔变形记39 分钟前
Solidity 合约超限问题及优化策略:以 FHEFactory 为例
人工智能·区块链
渡我白衣1 小时前
未来的 AI 操作系统(二)——世界即界面:自然语言成为新的人机交互协议
人工智能·语言模型·人机交互
墨利昂1 小时前
词向量:自然语言处理技术体系的核心基石
人工智能·自然语言处理
格林威1 小时前
可见光工业相机半导体制造领域中的应用
图像处理·人工智能·数码相机·计算机视觉·视觉检测·制造·工业相机
星期天要睡觉2 小时前
计算机视觉(opencv)——基于 MediaPipe 人体姿态检测
人工智能·opencv·计算机视觉