神经网络的可解释性理论及工具

1.可解释性分析简介

explainable AI:why,利用决策树

eg:

interpretable AI:how

2.机器学习的可解释性

解释工具:

按输入对输出的贡献值。

然后把值sigmoid成0-1.

例子:

就是去计算,有你和没你,能有多大区S别。

SHAP包 去搜一下用

单个样本的

全部样本的

3.图像识别的可解释性

相关推荐
千天夜24 分钟前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络
大数据面试宝典25 分钟前
用AI来写SQL:让ChatGPT成为你的数据库助手
数据库·人工智能·chatgpt
封步宇AIGC30 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_5236742132 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
HappyAcmen42 分钟前
IDEA部署AI代写插件
java·人工智能·intellij-idea
噜噜噜噜鲁先森1 小时前
看懂本文,入门神经网络Neural Network
人工智能
InheritGuo2 小时前
It’s All About Your Sketch: Democratising Sketch Control in Diffusion Models
人工智能·计算机视觉·sketch
weixin_307779132 小时前
证明存在常数c, C > 0,使得在一系列特定条件下,某个特定投资时刻出现的概率与天数的对数成反比
人工智能·算法·机器学习
封步宇AIGC2 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.6.A股宏观经济数据
人工智能·python·机器学习·数据挖掘
Jack黄从零学c++2 小时前
opencv(c++)图像的灰度转换
c++·人工智能·opencv