【文献阅读】Unsupervised Machine Learning for Bot Detection on Twitter

Abstract

引入新特征,并降低所提模型的复杂性,从而提高基于聚类算法的机器人识别准确性。

最小化数据集维度和选择重要特征来实现的。

实验证明该方法的特征可以与四种不同的聚类技术(agglomerating、k-medoids、DBSCAN 和 K-means)结合使用,以解决由缺失标签和异常值引起的机器人识别问题。

通过选择排名靠前的特征并减少维度,达到了 0.99 的准确率。

Methodology

关键原理是识别给定聚类中账户之间的相似性。这些算法生成的预测效果取决于数据的准备情况以及关键特征的识别。

  1. 预处理阶段:数据清理和格式化等。
  2. 特征增强阶段:新特征被创建,并选择最佳特征以改进聚类算法。为了加快聚类过程,采用Principal Component Analysis(PCA)来减少数据维度。
  3. 特征实验与测试阶段:使用四种聚类算法(agglomerating、DBSCAN、K-Means 和 k-medoids),通过无监督学习方法有效处理特征。
  4. 评估阶段:评估系统的性能。

dataset

new features

Experiment


相关推荐
IT_陈寒19 分钟前
React性能翻倍!90%开发者忽略的5个Hooks最佳实践
前端·人工智能·后端
大任视点21 分钟前
消费电子PCB需求激增,科翔股份发力AI手机终端大周期
人工智能·智能手机
Learn Beyond Limits26 分钟前
Correlation vs Cosine vs Euclidean Distance|相关性vs余弦相似度vs欧氏距离
人工智能·python·神经网络·机器学习·ai·数据挖掘
专注于大数据技术栈26 分钟前
java学习--==和equals
java·python·学习
testtraveler2 小时前
[Fix] ImportError: libtorch_cpu.so: undefined symbol: iJIT_NotifyEvent
pytorch·python·bug
lang201509282 小时前
Kafka延迟操作机制深度解析
分布式·python·kafka
晨非辰3 小时前
数据结构排序系列指南:从O(n²)到O(n),计数排序如何实现线性时间复杂度
运维·数据结构·c++·人工智能·后端·深度学习·排序算法
2301_812914873 小时前
简单神经网络
人工智能·深度学习·神经网络
测试老哥3 小时前
软件测试:测试用例的设计
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
koo3644 小时前
pytorch环境配置
人工智能·pytorch·python