【文献阅读】Unsupervised Machine Learning for Bot Detection on Twitter

Abstract

引入新特征,并降低所提模型的复杂性,从而提高基于聚类算法的机器人识别准确性。

最小化数据集维度和选择重要特征来实现的。

实验证明该方法的特征可以与四种不同的聚类技术(agglomerating、k-medoids、DBSCAN 和 K-means)结合使用,以解决由缺失标签和异常值引起的机器人识别问题。

通过选择排名靠前的特征并减少维度,达到了 0.99 的准确率。

Methodology

关键原理是识别给定聚类中账户之间的相似性。这些算法生成的预测效果取决于数据的准备情况以及关键特征的识别。

  1. 预处理阶段:数据清理和格式化等。
  2. 特征增强阶段:新特征被创建,并选择最佳特征以改进聚类算法。为了加快聚类过程,采用Principal Component Analysis(PCA)来减少数据维度。
  3. 特征实验与测试阶段:使用四种聚类算法(agglomerating、DBSCAN、K-Means 和 k-medoids),通过无监督学习方法有效处理特征。
  4. 评估阶段:评估系统的性能。

dataset

new features

Experiment


相关推荐
五月君_8 分钟前
Nuxt UI v4.3 发布:原生 AI 富文本编辑器来了,Vue 生态又添一员猛将!
前端·javascript·vue.js·人工智能·ui
wjykp11 分钟前
109~111集成学习
人工智能·机器学习·集成学习
XLYcmy16 分钟前
TarGuessIRefined密码生成器详细分析
开发语言·数据结构·python·网络安全·数据安全·源代码·口令安全
小程故事多_8017 分钟前
Spring AI 赋能 Java,Spring Boot 快速落地 LLM 的企业级解决方案
java·人工智能·spring·架构·aigc
xcLeigh19 分钟前
AI的提示词专栏:写作助手 Prompt,从提纲到完整文章
人工智能·ai·prompt·提示词
weixin_4334176725 分钟前
Canny边缘检测算法原理与实现
python·opencv·算法
QYR_1126 分钟前
热塑性复合树脂市场报告:行业现状、增长动力与未来机遇
大数据·人工智能·物联网
梨落秋霜29 分钟前
Python入门篇【元组】
android·数据库·python
nju_spy29 分钟前
强化学习 -- 无导数随机优化算法玩俄罗斯方块Tetris(交叉熵方法CE + ADP近似动态规划CBMPI)
人工智能·强化学习·策略迭代·近似动态规划·交叉熵方法·价值函数近似·无导数优化
i小杨29 分钟前
python 项目相关
开发语言·python