【文献阅读】Unsupervised Machine Learning for Bot Detection on Twitter

Abstract

引入新特征,并降低所提模型的复杂性,从而提高基于聚类算法的机器人识别准确性。

最小化数据集维度和选择重要特征来实现的。

实验证明该方法的特征可以与四种不同的聚类技术(agglomerating、k-medoids、DBSCAN 和 K-means)结合使用,以解决由缺失标签和异常值引起的机器人识别问题。

通过选择排名靠前的特征并减少维度,达到了 0.99 的准确率。

Methodology

关键原理是识别给定聚类中账户之间的相似性。这些算法生成的预测效果取决于数据的准备情况以及关键特征的识别。

  1. 预处理阶段:数据清理和格式化等。
  2. 特征增强阶段:新特征被创建,并选择最佳特征以改进聚类算法。为了加快聚类过程,采用Principal Component Analysis(PCA)来减少数据维度。
  3. 特征实验与测试阶段:使用四种聚类算法(agglomerating、DBSCAN、K-Means 和 k-medoids),通过无监督学习方法有效处理特征。
  4. 评估阶段:评估系统的性能。

dataset

new features

Experiment


相关推荐
AI营销视界13 小时前
2025金融GEO厂商谁领风骚
人工智能
deephub13 小时前
机器学习超参数调优:十个实用的贝叶斯优化(Bayesian Optimization)进阶技巧
人工智能·python·深度学习·机器学习·贝叶斯优化
BJ_Bonree13 小时前
数智先锋 | 博睿数据×海尔消费金融:破解高频并发与强监管难题!
大数据·人工智能·金融
微盛企微增长小知识13 小时前
2025企业微信私有化部署服务商:微盛AI·企微管家的安全与效率实践
人工智能·安全·企业微信
王夏奇13 小时前
A2L变量的分类
人工智能·分类·数据挖掘
攻城狮7号13 小时前
AI时代的工业数据心脏:如何选择真正面向未来的时序数据库?
大数据·人工智能·时序数据库·apache iotdb·ainode·iotdb mcp
m0_3722570213 小时前
训练时,位置编码、Q、K 是怎么被优化成具有空间信息的?
人工智能·机器学习
咚咚王者13 小时前
人工智能之数学基础 线性代数:第一章 向量与矩阵
人工智能·线性代数·矩阵
非著名架构师13 小时前
嵌入业务的“气象智能芯片”:能源与金融企业如何将AI气象组件化为运营核心?
人工智能·深度学习·风光功率预测·高精度光伏功率预测模型·高精度气象数据
计算机学姐13 小时前
基于Python的智能点餐系统【2026最新】
开发语言·vue.js·后端·python·mysql·django·flask