【文献阅读】Unsupervised Machine Learning for Bot Detection on Twitter

Abstract

引入新特征,并降低所提模型的复杂性,从而提高基于聚类算法的机器人识别准确性。

最小化数据集维度和选择重要特征来实现的。

实验证明该方法的特征可以与四种不同的聚类技术(agglomerating、k-medoids、DBSCAN 和 K-means)结合使用,以解决由缺失标签和异常值引起的机器人识别问题。

通过选择排名靠前的特征并减少维度,达到了 0.99 的准确率。

Methodology

关键原理是识别给定聚类中账户之间的相似性。这些算法生成的预测效果取决于数据的准备情况以及关键特征的识别。

  1. 预处理阶段:数据清理和格式化等。
  2. 特征增强阶段:新特征被创建,并选择最佳特征以改进聚类算法。为了加快聚类过程,采用Principal Component Analysis(PCA)来减少数据维度。
  3. 特征实验与测试阶段:使用四种聚类算法(agglomerating、DBSCAN、K-Means 和 k-medoids),通过无监督学习方法有效处理特征。
  4. 评估阶段:评估系统的性能。

dataset

new features

Experiment


相关推荐
檐下翻书173几秒前
PC端免费跨职能流程图模板大全 中文
大数据·人工智能·架构·流程图·论文笔记
技术净胜1 分钟前
Python 操作 Cookie 完全指南,爬虫与 Web 开发实战
前端·爬虫·python
海棠AI实验室6 分钟前
第六章 日志体系:logging 让排错效率翻倍
python·logging
laufing13 分钟前
flask_restx 创建restful api
python·flask·restful
LaughingZhu16 分钟前
Product Hunt 每日热榜 | 2026-01-12
人工智能·经验分享·深度学习·神经网络·产品运营
美团技术团队19 分钟前
AAAI 2026 | 美团技术团队学术论文精选
人工智能
不如自挂东南吱22 分钟前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库
xiaozhazha_23 分钟前
2026 新规落地,金融级远程会议软件选型:快鹭会议AI 与合规技术双驱动
人工智能·金融
小鸡吃米…32 分钟前
机器学习中的简单线性回归
人工智能·机器学习·线性回归