【文献阅读】Unsupervised Machine Learning for Bot Detection on Twitter

Abstract

引入新特征,并降低所提模型的复杂性,从而提高基于聚类算法的机器人识别准确性。

最小化数据集维度和选择重要特征来实现的。

实验证明该方法的特征可以与四种不同的聚类技术(agglomerating、k-medoids、DBSCAN 和 K-means)结合使用,以解决由缺失标签和异常值引起的机器人识别问题。

通过选择排名靠前的特征并减少维度,达到了 0.99 的准确率。

Methodology

关键原理是识别给定聚类中账户之间的相似性。这些算法生成的预测效果取决于数据的准备情况以及关键特征的识别。

  1. 预处理阶段:数据清理和格式化等。
  2. 特征增强阶段:新特征被创建,并选择最佳特征以改进聚类算法。为了加快聚类过程,采用Principal Component Analysis(PCA)来减少数据维度。
  3. 特征实验与测试阶段:使用四种聚类算法(agglomerating、DBSCAN、K-Means 和 k-medoids),通过无监督学习方法有效处理特征。
  4. 评估阶段:评估系统的性能。

dataset

new features

Experiment


相关推荐
yj155833 分钟前
新房子装修好不能直接入住的原因有哪些?
python
算法狗233 分钟前
大模型推理中超出训练长度的外推方式有哪些?
人工智能
渡我白衣33 分钟前
数据是燃料:理解数据类型、质量评估与基本预处理
人工智能·深度学习·神经网络·机器学习·自然语言处理·机器人·caffe
luoluoal34 分钟前
基于python的病人信息管理系统及安全策略分析(源码+文档)
python·mysql·django·毕业设计·源码
Codebee35 分钟前
Ooder A2UI框架开源首发:构建企业级应用的全新选择
java·人工智能·全栈
百泰派克生物科技37 分钟前
串联质量标签(TMT)
人工智能·机器学习·蛋白质组学·蛋白质·质谱
草莓熊Lotso37 分钟前
Linux 实战:从零实现动态进度条(含缓冲区原理与多版本优化)
linux·运维·服务器·c++·人工智能·centos·进度条
渡我白衣2 小时前
多路转接之epoll:理论篇
人工智能·神经网络·网络协议·tcp/ip·自然语言处理·信息与通信·tcpdump
明月照山海-2 小时前
机器学习周报二十八
人工智能·机器学习
weixin_437497778 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp