爆改YOLOv8|使用MobileNetV4替换yolov8的Backbone

1,本文介绍

MobileNetV4 是最新的 MobileNet 系列模型,专为移动设备优化。它引入了通用反转瓶颈(UIB)和 Mobile MQA 注意力机制,提升了推理速度和效率。通过改进的神经网络架构搜索(NAS)和蒸馏技术,MobileNetV4 在多种硬件平台上实现了高效和准确的表现,在 ImageNet-1K 数据集上达到 87% 的准确率,同时在 Pixel 8 EdgeTPU 上的运行时间为 3.8 毫秒。

关于MobileNetV4的详细介绍可以看论文:[2404.10518] MobileNetV4 - Universal Models for the Mobile Ecosystem

本文将讲解如何将 MobileNetV4融合进yolov8

话不多说,上代码!

2, 将MobileNetV4融合进yolov8

2.1 步骤一

首先找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个MobileNetV4.py文件,文件名字可以根据你自己的习惯起,然后将MobileNetV4的核心代码复制进去。

from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
 
__all__ = ['MobileNetV4ConvLarge', 'MobileNetV4ConvSmall', 'MobileNetV4ConvMedium', 'MobileNetV4HybridMedium', 'MobileNetV4HybridLarge']
 
MNV4ConvSmall_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 32, 3, 2],
            [32, 32, 1, 1]
        ]
    },
    "layer2": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 96, 3, 2],
            [96, 64, 1, 1]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [64, 96, 5, 5, True, 2, 3],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 3, 0, True, 1, 4],
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [96,  128, 3, 3, True, 2, 6],
            [128, 128, 5, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 3],
            [128, 128, 0, 3, True, 1, 4],
            [128, 128, 0, 3, True, 1, 4],
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [128, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MNV4ConvMedium_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [32, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 80, 3, 5, True, 2, 4],
            [80, 80, 3, 3, True, 1, 2]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 8,
        "block_specs": [
            [80,  160, 3, 5, True, 2, 6],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 5, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 0, True, 1, 4],
            [160, 160, 0, 0, True, 1, 2],
            [160, 160, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [160, 256, 5, 5, True, 2, 6],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 3, 0, True, 1, 4],
            [256, 256, 3, 5, True, 1, 2],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 5, 0, True, 1, 2]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [256, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MNV4ConvLarge_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 24, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [24, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 96, 3, 5, True, 2, 4],
            [96, 96, 3, 3, True, 1, 4]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [96,  192, 3, 5, True, 2, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 5, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 13,
        "block_specs": [
            [192, 512, 5, 5, True, 2, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [512, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
def mhsa(num_heads, key_dim, value_dim, px):
    if px == 24:
        kv_strides = 2
    elif px == 12:
        kv_strides = 1
    query_h_strides = 1
    query_w_strides = 1
    use_layer_scale = True
    use_multi_query = True
    use_residual = True
    return [
        num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
        use_layer_scale, use_multi_query, use_residual
    ]
 
MNV4HybridConvMedium_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [32, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 80, 3, 5, True, 2, 4],
            [80, 80, 3, 3, True, 1, 2]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 8,
        "block_specs": [
            [80,  160, 3, 5, True, 2, 6],
            [160, 160, 0, 0, True, 1, 2],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 5, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 0, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 12,
        "block_specs": [
            [160, 256, 5, 5, True, 2, 6],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 2],
            [256, 256, 3, 5, True, 1, 2],
            [256, 256, 0, 0, True, 1, 2],
            [256, 256, 0, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 3, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 5, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [256, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MNV4HybridConvLarge_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 24, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [24, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 96, 3, 5, True, 2, 4],
            [96, 96, 3, 3, True, 1, 4]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [96,  192, 3, 5, True, 2, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 5, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 14,
        "block_specs": [
            [192, 512, 5, 5, True, 2, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [512, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MODEL_SPECS = {
    "MobileNetV4ConvSmall": MNV4ConvSmall_BLOCK_SPECS,
    "MobileNetV4ConvMedium": MNV4ConvMedium_BLOCK_SPECS,
    "MobileNetV4ConvLarge": MNV4ConvLarge_BLOCK_SPECS,
    "MobileNetV4HybridMedium": MNV4HybridConvMedium_BLOCK_SPECS,
    "MobileNetV4HybridLarge": MNV4HybridConvLarge_BLOCK_SPECS
}
 
 
def make_divisible(
        value: float,
        divisor: int,
        min_value: Optional[float] = None,
        round_down_protect: bool = True,
) -> int:
    """
    This function is copied from here
    "https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_layers.py"
    This is to ensure that all layers have channels that are divisible by 8.
    Args:
        value: A `float` of original value.
        divisor: An `int` of the divisor that need to be checked upon.
        min_value: A `float` of  minimum value threshold.
        round_down_protect: A `bool` indicating whether round down more than 10%
        will be allowed.
    Returns:
        The adjusted value in `int` that is divisible against divisor.
    """
    if min_value is None:
        min_value = divisor
    new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if round_down_protect and new_value < 0.9 * value:
        new_value += divisor
    return int(new_value)
 
 
def conv_2d(inp, oup, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):
    conv = nn.Sequential()
    padding = (kernel_size - 1) // 2
    conv.add_module('conv', nn.Conv2d(inp, oup, kernel_size, stride, padding, bias=bias, groups=groups))
    if norm:
        conv.add_module('BatchNorm2d', nn.BatchNorm2d(oup))
    if act:
        conv.add_module('Activation', nn.ReLU6())
    return conv
 
 
class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio, act=False, squeeze_excitation=False):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]
        hidden_dim = int(round(inp * expand_ratio))
        self.block = nn.Sequential()
        if expand_ratio != 1:
            self.block.add_module('exp_1x1', conv_2d(inp, hidden_dim, kernel_size=3, stride=stride))
        if squeeze_excitation:
            self.block.add_module('conv_3x3',
                                  conv_2d(hidden_dim, hidden_dim, kernel_size=3, stride=stride, groups=hidden_dim))
        self.block.add_module('red_1x1', conv_2d(hidden_dim, oup, kernel_size=1, stride=1, act=act))
        self.use_res_connect = self.stride == 1 and inp == oup
 
    def forward(self, x):
        if self.use_res_connect:
            return x + self.block(x)
        else:
            return self.block(x)
 
 
class UniversalInvertedBottleneckBlock(nn.Module):
    def __init__(self,
                 inp,
                 oup,
                 start_dw_kernel_size,
                 middle_dw_kernel_size,
                 middle_dw_downsample,
                 stride,
                 expand_ratio
                 ):
        """An inverted bottleneck block with optional depthwises.
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
        """
        super().__init__()
        # Starting depthwise conv.
        self.start_dw_kernel_size = start_dw_kernel_size
        if self.start_dw_kernel_size:
            stride_ = stride if not middle_dw_downsample else 1
            self._start_dw_ = conv_2d(inp, inp, kernel_size=start_dw_kernel_size, stride=stride_, groups=inp, act=False)
        # Expansion with 1x1 convs.
        expand_filters = make_divisible(inp * expand_ratio, 8)
        self._expand_conv = conv_2d(inp, expand_filters, kernel_size=1)
        # Middle depthwise conv.
        self.middle_dw_kernel_size = middle_dw_kernel_size
        if self.middle_dw_kernel_size:
            stride_ = stride if middle_dw_downsample else 1
            self._middle_dw = conv_2d(expand_filters, expand_filters, kernel_size=middle_dw_kernel_size, stride=stride_,
                                      groups=expand_filters)
        # Projection with 1x1 convs.
        self._proj_conv = conv_2d(expand_filters, oup, kernel_size=1, stride=1, act=False)
 
        # Ending depthwise conv.
        # this not used
        # _end_dw_kernel_size = 0
        # self._end_dw = conv_2d(oup, oup, kernel_size=_end_dw_kernel_size, stride=stride, groups=inp, act=False)
 
    def forward(self, x):
        if self.start_dw_kernel_size:
            x = self._start_dw_(x)
            # print("_start_dw_", x.shape)
        x = self._expand_conv(x)
        # print("_expand_conv", x.shape)
        if self.middle_dw_kernel_size:
            x = self._middle_dw(x)
            # print("_middle_dw", x.shape)
        x = self._proj_conv(x)
        # print("_proj_conv", x.shape)
        return x
 
 
class MultiQueryAttentionLayerWithDownSampling(nn.Module):
    def __init__(self, inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
                 dw_kernel_size=3, dropout=0.0):
        """Multi Query Attention with spatial downsampling.
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
        3 parameters are introduced for the spatial downsampling:
        1. kv_strides: downsampling factor on Key and Values only.
        2. query_h_strides: vertical strides on Query only.
        3. query_w_strides: horizontal strides on Query only.
        This is an optimized version.
        1. Projections in Attention is explict written out as 1x1 Conv2D.
        2. Additional reshapes are introduced to bring a up to 3x speed up.
        """
        super().__init__()
        self.num_heads = num_heads
        self.key_dim = key_dim
        self.value_dim = value_dim
        self.query_h_strides = query_h_strides
        self.query_w_strides = query_w_strides
        self.kv_strides = kv_strides
        self.dw_kernel_size = dw_kernel_size
        self.dropout = dropout
 
        self.head_dim = key_dim // num_heads
 
        if self.query_h_strides > 1 or self.query_w_strides > 1:
            self._query_downsampling_norm = nn.BatchNorm2d(inp)
        self._query_proj = conv_2d(inp, num_heads * key_dim, 1, 1, norm=False, act=False)
 
        if self.kv_strides > 1:
            self._key_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
            self._value_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
        self._key_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)
        self._value_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)
 
        self._output_proj = conv_2d(num_heads * key_dim, inp, 1, 1, norm=False, act=False)
        self.dropout = nn.Dropout(p=dropout)
 
    def forward(self, x):
        batch_size, seq_length, _, _ = x.size()
        if self.query_h_strides > 1 or self.query_w_strides > 1:
            q = F.avg_pool2d(self.query_h_stride, self.query_w_stride)
            q = self._query_downsampling_norm(q)
            q = self._query_proj(q)
        else:
            q = self._query_proj(x)
        px = q.size(2)
        q = q.view(batch_size, self.num_heads, -1, self.key_dim)  # [batch_size, num_heads, seq_length, key_dim]
 
        if self.kv_strides > 1:
            k = self._key_dw_conv(x)
            k = self._key_proj(k)
            v = self._value_dw_conv(x)
            v = self._value_proj(v)
        else:
            k = self._key_proj(x)
            v = self._value_proj(x)
        k = k.view(batch_size, self.key_dim, -1)  # [batch_size, key_dim, seq_length]
        v = v.view(batch_size, -1, self.key_dim)  # [batch_size, seq_length, key_dim]
 
        # calculate attn score
        attn_score = torch.matmul(q, k) / (self.head_dim ** 0.5)
        attn_score = self.dropout(attn_score)
        attn_score = F.softmax(attn_score, dim=-1)
 
        context = torch.matmul(attn_score, v)
        context = context.view(batch_size, self.num_heads * self.key_dim, px, px)
        output = self._output_proj(context)
        return output
 
 
class MNV4LayerScale(nn.Module):
    def __init__(self, init_value):
        """LayerScale as introduced in CaiT: https://arxiv.org/abs/2103.17239
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
        As used in MobileNetV4.
        Attributes:
            init_value (float): value to initialize the diagonal matrix of LayerScale.
        """
        super().__init__()
        self.init_value = init_value
 
    def forward(self, x):
        gamma = self.init_value * torch.ones(x.size(-1), dtype=x.dtype, device=x.device)
        return x * gamma
 
 
class MultiHeadSelfAttentionBlock(nn.Module):
    def __init__(
            self,
            inp,
            num_heads,
            key_dim,
            value_dim,
            query_h_strides,
            query_w_strides,
            kv_strides,
            use_layer_scale,
            use_multi_query,
            use_residual=True
    ):
        super().__init__()
        self.query_h_strides = query_h_strides
        self.query_w_strides = query_w_strides
        self.kv_strides = kv_strides
        self.use_layer_scale = use_layer_scale
        self.use_multi_query = use_multi_query
        self.use_residual = use_residual
 
        self._input_norm = nn.BatchNorm2d(inp)
        if self.use_multi_query:
            self.multi_query_attention = MultiQueryAttentionLayerWithDownSampling(
                inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides
            )
        else:
            self.multi_head_attention = nn.MultiheadAttention(inp, num_heads, kdim=key_dim)
 
        if self.use_layer_scale:
            self.layer_scale_init_value = 1e-5
            self.layer_scale = MNV4LayerScale(self.layer_scale_init_value)
 
    def forward(self, x):
        # Not using CPE, skipped
        # input norm
        shortcut = x
        x = self._input_norm(x)
        # multi query
        if self.use_multi_query:
            x = self.multi_query_attention(x)
        else:
            x = self.multi_head_attention(x, x)
        # layer scale
        if self.use_layer_scale:
            x = self.layer_scale(x)
        # use residual
        if self.use_residual:
            x = x + shortcut
        return x
 
 
def build_blocks(layer_spec):
    if not layer_spec.get('block_name'):
        return nn.Sequential()
    block_names = layer_spec['block_name']
    layers = nn.Sequential()
    if block_names == "convbn":
        schema_ = ['inp', 'oup', 'kernel_size', 'stride']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"convbn_{i}", conv_2d(**args))
    elif block_names == "uib":
        schema_ = ['inp', 'oup', 'start_dw_kernel_size', 'middle_dw_kernel_size', 'middle_dw_downsample', 'stride',
                   'expand_ratio', 'msha']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            msha = args.pop("msha") if "msha" in args else 0
            layers.add_module(f"uib_{i}", UniversalInvertedBottleneckBlock(**args))
            if msha:
                msha_schema_ = [
                    "inp", "num_heads", "key_dim", "value_dim", "query_h_strides", "query_w_strides", "kv_strides",
                    "use_layer_scale", "use_multi_query", "use_residual"
                ]
                args = dict(zip(msha_schema_, [args['oup']] + (msha)))
                layers.add_module(f"msha_{i}", MultiHeadSelfAttentionBlock(**args))
    elif block_names == "fused_ib":
        schema_ = ['inp', 'oup', 'stride', 'expand_ratio', 'act']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"fused_ib_{i}", InvertedResidual(**args))
    else:
        raise NotImplementedError
    return layers
 
 
class MobileNetV4(nn.Module):
    def __init__(self, model):
        # MobileNetV4ConvSmall  MobileNetV4ConvMedium  MobileNetV4ConvLarge
        # MobileNetV4HybridMedium  MobileNetV4HybridLarge
        """Params to initiate MobilenNetV4
        Args:
            model : support 5 types of models as indicated in
            "https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py"
        """
        super().__init__()
        assert model in MODEL_SPECS.keys()
        self.model = model
        self.spec = MODEL_SPECS[self.model]
 
        # conv0
        self.conv0 = build_blocks(self.spec['conv0'])
        # layer1
        self.layer1 = build_blocks(self.spec['layer1'])
        # layer2
        self.layer2 = build_blocks(self.spec['layer2'])
        # layer3
        self.layer3 = build_blocks(self.spec['layer3'])
        # layer4
        self.layer4 = build_blocks(self.spec['layer4'])
        # layer5
        self.layer5 = build_blocks(self.spec['layer5'])
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def forward(self, x):
        x0 = self.conv0(x)
        x1 = self.layer1(x0)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        # x5 = self.layer5(x4)
        # x5 = nn.functional.adaptive_avg_pool2d(x5, 1)
        return [x1, x2, x3, x4]
 
 
def MobileNetV4ConvSmall():
    model = MobileNetV4('MobileNetV4ConvSmall')
    return model
 
def MobileNetV4ConvMedium():
    model = MobileNetV4('MobileNetV4ConvMedium')
    return model
 
def MobileNetV4ConvLarge():
    model = MobileNetV4('MobileNetV4ConvLarge')
    return model
 
def MobileNetV4HybridMedium():
    model = MobileNetV4('MobileNetV4HybridMedium')
    return model
 
def MobileNetV4HybridLarge():
    model = MobileNetV4('MobileNetV4HybridLarge')
    return model

2.2 步骤二

在task.py导入我们的模块

2.3 步骤三

如下图标注框所示,添加两行代码

2.4 步骤四

在task.py如下图所示位置,添加标注框内所示代码

        elif m in {MobileNetV4ConvLarge, MobileNetV4ConvSmall, \
            MobileNetV4ConvMedium, MobileNetV4HybridMedium, MobileNetV4HybridLarge}:
            m = m(*args)
            c2 = m.width_list
            backbone = True

2.5 步骤五

在task.py如下图所示位置,添加标注框内所示代码

2.6 步骤六

在task.py如下图所示位置的代码需要替换

替换为下图所示代码

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
 
        save.extend(
            x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)

2.7 步骤七

这次修改在base_model的predict_once方法里面,在task.py的前面部分代码中。

在task.py如下图所示位置的代码需要替换

替换为下图所示代码

  def _predict_once(self, x, profile=False, visualize=False, embed=None):
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

2.8 步骤八

将下图所示代码注释掉,在ultralytics/utils/torch_utils.py中

修改为下图所示

2.9 步骤九

将下图所示代码注释掉,在task.py中,改为s=640

到这里完成修改,但是这里面细节很多,大家一定要注意,仔细修改,步骤比较多,出现错误很难找出来

复制下面的yaml文件运行即可

yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  # MobileNetV4ConvSmall, MobileNetV4ConvLarge,  MobileNetV4ConvMedium,
  # MobileNetV4HybridMedium, MobileNetV4HybridLarge  支持这五种版本
  - [-1, 1, MobileNetV4ConvSmall, []]  # 4 将左面的MobileNetV4ConvSmall改为上面任意一个即替换对应的MobileNetV4版本
  - [-1, 1, SPPF, [1024, 5]]  # 5
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)
 
  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

# 今天这个修改的地方比较多,大家一定要仔细检查

不知不觉已经看完了哦,动动小手留个点赞吧--_--

相关推荐
吕小明么28 分钟前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
程序员shen1616111 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法
人人人人一样一样1 小时前
作业Python
python
CSBLOG1 小时前
深度学习试题及答案解析(一)
人工智能·深度学习
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
四口鲸鱼爱吃盐2 小时前
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
小陈phd2 小时前
深度学习之超分辨率算法——SRCNN
python·深度学习·tensorflow·卷积
CodeClimb2 小时前
【华为OD-E卷-简单的自动曝光 100分(python、java、c++、js、c)】
java·python·华为od
数据小小爬虫2 小时前
如何利用Python爬虫获取商品历史价格信息
开发语言·爬虫·python