跟李沐学AI:长短期记忆网络LSTM

输入们、遗忘门和输出门

LSTM引入输入门、忘记门和输出门

输入门计算公式为:

遗忘门计算公式为:

输出门计算公式为:

它们由三个具有sigmoid激活函数的全连接层处理, 以计算输入门、遗忘门和输出门的值。 因此,这三个门的值都在(0,1)的范围内。

候选记忆元

类似RNN中的,计算公式为:

记忆元

LSTM中,输入门和遗忘门类似GRU中控制输入或遗忘的机制。输入们用于控制采用多少来自的新数据,遗忘门用于控制保留多少过去的记忆元的内容。随后按元素乘法,得出

如果遗忘门始终为1且输入门始终为0, 则过去的记忆元Ct−1 将随时间被保存并传递到当前时间步。 引入这种设计是为了缓解梯度消失问题, 并更好地捕获序列中的长距离依赖关系。

隐状态

LSTM中,输出门用于计算隐状态:。只要输出门接近1,我们就能够有效地将所有记忆信息传递给预测部分, 而对于输出门接近0,我们只保留记忆元内的所有信息,而不需要更新隐状态。

相关推荐
浔川python社14 分钟前
【维护期间重要提醒】请勿使用浔川 AI 翻译 v6.0 翻译违规内容
人工智能
CS创新实验室33 分钟前
AI 与编程
人工智能·编程·编程语言
min1811234561 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
_codemonster1 小时前
高斯卷积的可加性定理
人工智能·计算机视觉
数据智研1 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
likuolei1 小时前
Spring AI框架完整指南
人工智能·python·spring
梵得儿SHI1 小时前
(第四篇)Spring AI 核心技术攻坚:多轮对话与记忆机制,打造有上下文的 AI
java·人工智能·spring·springai生态·上下文丢失问题·三类记忆·智能客服实战案
二哈喇子!2 小时前
PyTorch生态与昇腾平台适配:环境搭建与详细安装指南
人工智能·pytorch·python
lingzhilab2 小时前
零知ESP32-S3 部署AI小智 2.1,继电器和音量控制以及页面展示音量
人工智能
两万五千个小时2 小时前
AI Agent 框架演进
人工智能