跟李沐学AI:长短期记忆网络LSTM

输入们、遗忘门和输出门

LSTM引入输入门、忘记门和输出门

输入门计算公式为:

遗忘门计算公式为:

输出门计算公式为:

它们由三个具有sigmoid激活函数的全连接层处理, 以计算输入门、遗忘门和输出门的值。 因此,这三个门的值都在(0,1)的范围内。

候选记忆元

类似RNN中的,计算公式为:

记忆元

LSTM中,输入门和遗忘门类似GRU中控制输入或遗忘的机制。输入们用于控制采用多少来自的新数据,遗忘门用于控制保留多少过去的记忆元的内容。随后按元素乘法,得出

如果遗忘门始终为1且输入门始终为0, 则过去的记忆元Ct−1 将随时间被保存并传递到当前时间步。 引入这种设计是为了缓解梯度消失问题, 并更好地捕获序列中的长距离依赖关系。

隐状态

LSTM中,输出门用于计算隐状态:。只要输出门接近1,我们就能够有效地将所有记忆信息传递给预测部分, 而对于输出门接近0,我们只保留记忆元内的所有信息,而不需要更新隐状态。

相关推荐
whitelbwwww6 分钟前
Python图像处理入门指南--opencv
人工智能·opencv·计算机视觉
Peter114671785014 分钟前
华中科技大学研究生课程《数字图像处理I》期末考试(2025-回忆版/电子信息与通信学院)
图像处理·人工智能·计算机视觉
颜颜yan_23 分钟前
在openEuler上搞个云原生AI模型商店:像点外卖一样部署模型
人工智能·云原生
lomocode35 分钟前
Dify 自建部署完全指南:从上手到放弃到真香
人工智能
aaaa_a1331 小时前
李宏毅——self-attention Transformer
人工智能·深度学习·transformer
Coovally AI模型快速验证2 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang2 小时前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian2 小时前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python
oliveray2 小时前
解决开放世界目标检测问题——Grounding DINO
人工智能·目标检测·计算机视觉
子非鱼9212 小时前
3 传统序列模型——RNN
人工智能·rnn·深度学习