目标检测经典算法的个人理解

one stage

1、RCNN -> Fast-RCNN:RPN部分从用传统的算法 -> 用深度学习网络来实现。

2、Fast-RCNN -> Faster-RCNN:从先选region再求Feature -> 先求Feature再选region。

two stage

1、SSD(2016):VGG做backbone,加入多尺度特征图融合

2、Retinanet(2017):最大的贡献在于用了Focal loss解决了类别不平衡问题。使得一阶段算法的准确度高于了两阶段。

3、YOLO

目标检测算法的主要思路

1、选择候选框

2、提取特征预测候选框的类别及区域优化,所以一个候选框通常有五个参数:box的四个参数和一个类别预测值

3、loss主要由类别损失和BoundingBox的损失组成

4、算法主要的改进思路:①候选框的选取(比例、中心等) ②特征提取的网络 ③损失函数的计算 ④计算损失时采样的规则

相关推荐
Danceful_YJ3 小时前
33.Transformer架构
人工智能·pytorch·深度学习
大胆飞猪4 小时前
递归、剪枝、回溯算法---全排列、子集问题(力扣.46,78)
算法·leetcode·剪枝
美狐美颜SDK开放平台5 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩6 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
Kisorge6 小时前
【电机控制】基于STM32F103C8T6的二轮平衡车设计——LQR线性二次线控制器(算法篇)
stm32·嵌入式硬件·算法
lqqjuly6 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_436962186 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉7 小时前
BERT 完整教程指南
人工智能·深度学习·bert
铭哥的编程日记7 小时前
深入浅出蓝桥杯:算法基础概念与实战应用(二)基础算法(下)
算法·职场和发展·蓝桥杯
Swift社区7 小时前
LeetCode 421 - 数组中两个数的最大异或值
算法·leetcode·职场和发展