目标检测经典算法的个人理解

one stage

1、RCNN -> Fast-RCNN:RPN部分从用传统的算法 -> 用深度学习网络来实现。

2、Fast-RCNN -> Faster-RCNN:从先选region再求Feature -> 先求Feature再选region。

two stage

1、SSD(2016):VGG做backbone,加入多尺度特征图融合

2、Retinanet(2017):最大的贡献在于用了Focal loss解决了类别不平衡问题。使得一阶段算法的准确度高于了两阶段。

3、YOLO

目标检测算法的主要思路

1、选择候选框

2、提取特征预测候选框的类别及区域优化,所以一个候选框通常有五个参数:box的四个参数和一个类别预测值

3、loss主要由类别损失和BoundingBox的损失组成

4、算法主要的改进思路:①候选框的选取(比例、中心等) ②特征提取的网络 ③损失函数的计算 ④计算损失时采样的规则

相关推荐
Univin13 分钟前
C++(10.5)
开发语言·c++·算法
Asmalin29 分钟前
【代码随想录day 35】 力扣 01背包问题 一维
算法·leetcode·职场和发展
剪一朵云爱着32 分钟前
力扣2779. 数组的最大美丽值
算法·leetcode·排序算法
qq_4286396136 分钟前
虚幻基础:组件间的联动方式
c++·算法·虚幻
Funny_AI_LAB1 小时前
OpenAI DevDay 2025:ChatGPT 进化为平台,开启 AI 应用新纪元
人工智能·ai·语言模型·chatgpt
深瞳智检1 小时前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
怎么没有名字注册了啊1 小时前
C++后台进程
java·c++·算法
深眸财经2 小时前
机器人再冲港交所,优艾智合能否破行业困局?
人工智能·机器人
小宁爱Python2 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
Rubisco..2 小时前
codeforces 2.0
算法