目标检测经典算法的个人理解

one stage

1、RCNN -> Fast-RCNN:RPN部分从用传统的算法 -> 用深度学习网络来实现。

2、Fast-RCNN -> Faster-RCNN:从先选region再求Feature -> 先求Feature再选region。

two stage

1、SSD(2016):VGG做backbone,加入多尺度特征图融合

2、Retinanet(2017):最大的贡献在于用了Focal loss解决了类别不平衡问题。使得一阶段算法的准确度高于了两阶段。

3、YOLO

目标检测算法的主要思路

1、选择候选框

2、提取特征预测候选框的类别及区域优化,所以一个候选框通常有五个参数:box的四个参数和一个类别预测值

3、loss主要由类别损失和BoundingBox的损失组成

4、算法主要的改进思路:①候选框的选取(比例、中心等) ②特征提取的网络 ③损失函数的计算 ④计算损失时采样的规则

相关推荐
小白程序员成长日记几秒前
2025.11.23 力扣每日一题
算法·leetcode·职场和发展
Jing_Rainbow33 分钟前
【AI-7 全栈-2 /Lesson16(2025-11-01)】构建一个基于 AIGC 的 Logo 生成 Bot:从前端到后端的完整技术指南 🎨
前端·人工智能·后端
syounger34 分钟前
奔驰全球 IT 加速转型:SAP × AWS × Agentic AI 如何重塑企业核心系统
人工智能·云计算·aws
16_one1 小时前
autoDL安装Open-WebUi+Rag本地知识库问答+Function Calling
人工智能·后端·算法
智能交通技术1 小时前
iTSTech:自动驾驶技术综述报告 2025
人工智能·机器学习·自动驾驶
清云逸仙1 小时前
AI Prompt 工程最佳实践:打造结构化的Prompt
人工智能·经验分享·深度学习·ai·ai编程
todoitbo1 小时前
基于Rokid CXR-M SDK实现AR智能助手应用:让AI大模型走进AR眼镜
人工智能·ai·ar·ar眼镜·rokid
hacker7072 小时前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
散峰而望2 小时前
C++数组(三)(算法竞赛)
开发语言·c++·算法·github
暖光资讯2 小时前
前行者获2025抖音最具影响力品牌奖,亮相上海ZFX装备前线展,引领外设行业“文化科技”新浪潮
人工智能·科技