目标检测经典算法的个人理解

one stage

1、RCNN -> Fast-RCNN:RPN部分从用传统的算法 -> 用深度学习网络来实现。

2、Fast-RCNN -> Faster-RCNN:从先选region再求Feature -> 先求Feature再选region。

two stage

1、SSD(2016):VGG做backbone,加入多尺度特征图融合

2、Retinanet(2017):最大的贡献在于用了Focal loss解决了类别不平衡问题。使得一阶段算法的准确度高于了两阶段。

3、YOLO

目标检测算法的主要思路

1、选择候选框

2、提取特征预测候选框的类别及区域优化,所以一个候选框通常有五个参数:box的四个参数和一个类别预测值

3、loss主要由类别损失和BoundingBox的损失组成

4、算法主要的改进思路:①候选框的选取(比例、中心等) ②特征提取的网络 ③损失函数的计算 ④计算损失时采样的规则

相关推荐
数新网络9 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee9 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch9 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手9 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1339 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯9 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
古城小栈9 小时前
Rust变量设计核心:默认不可变与mut显式可变的深层逻辑
算法·rust
白日做梦Q10 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
电商API&Tina10 小时前
跨境电商 API 对接指南:亚马逊 + 速卖通接口调用全流程
大数据·服务器·数据库·python·算法·json·图搜索算法
Yyyyy123jsjs10 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链