目标检测经典算法的个人理解

one stage

1、RCNN -> Fast-RCNN:RPN部分从用传统的算法 -> 用深度学习网络来实现。

2、Fast-RCNN -> Faster-RCNN:从先选region再求Feature -> 先求Feature再选region。

two stage

1、SSD(2016):VGG做backbone,加入多尺度特征图融合

2、Retinanet(2017):最大的贡献在于用了Focal loss解决了类别不平衡问题。使得一阶段算法的准确度高于了两阶段。

3、YOLO

目标检测算法的主要思路

1、选择候选框

2、提取特征预测候选框的类别及区域优化,所以一个候选框通常有五个参数:box的四个参数和一个类别预测值

3、loss主要由类别损失和BoundingBox的损失组成

4、算法主要的改进思路:①候选框的选取(比例、中心等) ②特征提取的网络 ③损失函数的计算 ④计算损失时采样的规则

相关推荐
swanwei5 小时前
AI与电力的深度绑定:算力与能源分配的趋势分析
大数据·人工智能
長安一片月5 小时前
深度学习的前世今生
人工智能·深度学习
逻极5 小时前
Spec-Kit 实战指南:从零到一构建“照片拖拽相册”Web App
人工智能·ai·agent·ai编程·web app
骄傲的心别枯萎5 小时前
RV1126 NO.40:OPENCV图形计算面积、弧长API讲解
人工智能·opencv·计算机视觉·音视频·rv1126
Greedy Alg5 小时前
LeetCode 208. 实现 Trie (前缀树)
算法
Kt&Rs5 小时前
11.5 LeetCode 题目汇总与解题思路
数据结构·算法·leetcode
还是码字踏实5 小时前
基础数据结构之数组的前缀和技巧:和为K的子数组(LeetCode 560 中等题)
算法·leetcode·前缀和·哈希字典
极客学术工坊7 小时前
2023年第二十届五一数学建模竞赛-A题 无人机定点投放问题-基于抛体运动的无人机定点投放问题研究
人工智能·机器学习·数学建模·启发式算法
Theodore_10228 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云9 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能