目标检测经典算法的个人理解

one stage

1、RCNN -> Fast-RCNN:RPN部分从用传统的算法 -> 用深度学习网络来实现。

2、Fast-RCNN -> Faster-RCNN:从先选region再求Feature -> 先求Feature再选region。

two stage

1、SSD(2016):VGG做backbone,加入多尺度特征图融合

2、Retinanet(2017):最大的贡献在于用了Focal loss解决了类别不平衡问题。使得一阶段算法的准确度高于了两阶段。

3、YOLO

目标检测算法的主要思路

1、选择候选框

2、提取特征预测候选框的类别及区域优化,所以一个候选框通常有五个参数:box的四个参数和一个类别预测值

3、loss主要由类别损失和BoundingBox的损失组成

4、算法主要的改进思路:①候选框的选取(比例、中心等) ②特征提取的网络 ③损失函数的计算 ④计算损失时采样的规则

相关推荐
西柚小萌新1 分钟前
【计算机视觉CV:标注工具】--ISAT
人工智能·计算机视觉
三万棵雪松4 分钟前
【AI小智硬件程序(八)】
c++·人工智能·嵌入式·esp32·ai小智
永远都不秃头的程序员(互关)5 分钟前
【K-Means深度探索(二)】K值之谜:肘部法则与轮廓系数,如何选出你的最佳K?
算法·机器学习·kmeans
基层小星6 分钟前
用ai写完材料有个差不多后,材料星如何精准修改润色?
人工智能·ai·ai写作·笔杆子·公文写作·修改润色
码农幻想梦7 分钟前
实验7 知识表示与推理
开发语言·人工智能·python
玄冥剑尊7 分钟前
回溯算法深化 II
算法·回溯算法
_YiFei8 分钟前
从 “选题卡壳” 到 “PPT 定稿”,AI 如何搞定开题全流程?
人工智能
IT_陈寒9 分钟前
SpringBoot 3.0实战:10个高效开发技巧让你的启动时间减少50%
前端·人工智能·后端
源于花海14 分钟前
迁移学习的第二类方法:特征选择
人工智能·机器学习·迁移学习·特征选择
Tisfy15 分钟前
LeetCode 3453.分割正方形 I:二分查找
算法·leetcode·二分查找·题解·二分