目标检测经典算法的个人理解

one stage

1、RCNN -> Fast-RCNN:RPN部分从用传统的算法 -> 用深度学习网络来实现。

2、Fast-RCNN -> Faster-RCNN:从先选region再求Feature -> 先求Feature再选region。

two stage

1、SSD(2016):VGG做backbone,加入多尺度特征图融合

2、Retinanet(2017):最大的贡献在于用了Focal loss解决了类别不平衡问题。使得一阶段算法的准确度高于了两阶段。

3、YOLO

目标检测算法的主要思路

1、选择候选框

2、提取特征预测候选框的类别及区域优化,所以一个候选框通常有五个参数:box的四个参数和一个类别预测值

3、loss主要由类别损失和BoundingBox的损失组成

4、算法主要的改进思路:①候选框的选取(比例、中心等) ②特征提取的网络 ③损失函数的计算 ④计算损失时采样的规则

相关推荐
2501_9416233241 分钟前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛1 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
Yue丶越1 小时前
【C语言】字符函数和字符串函数
c语言·开发语言·算法
AKAMAI1 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus1 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声1 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API1 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
小白程序员成长日记1 小时前
2025.11.24 力扣每日一题
算法·leetcode·职场和发展
咚咚王者1 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
有一个好名字1 小时前
LeetCode跳跃游戏:思路与题解全解析
算法·leetcode·游戏