搭配Knowledge Graph的RAG架构

1. RAG

检索增强生成(Retrieval-Augmented Generation,简称 RAG)通过结合大型语言模型(LLM)和信息检索系统来提高生成文本的准确性和相关性。这种方法允许模型在生成回答之前,先从权威知识库中检索相关信息,从而确保输出内容的时效性和专业性,无需对模型本身进行重新训练。

RAG技术之所以重要,是因为它解决了LLM面临的一些关键挑战,例如虚假信息的提供、过时信息的生成、非权威来源的依赖以及由于术语混淆导致的不准确响应。通过引入RAG,可以从权威且预先确定的知识来源中检索信息,增强了对生成文本的控制,同时提高了用户对AI解决方案的信任度。

2. 知识图谱

知识图谱(Knowledge Graph)是一种结构化的语义知识库,它旨在存储与现实世界实体(如人、地点、组织、事件等)相关的信息,并描述这些实体之间的各种关系。知识图谱通常用于增强搜索引擎的功能,提供更丰富的搜索结果,以及在各种人工智能应用中改善数据的语义理解。

知识图谱的核心组成部分包括:

  • 实体(Entities):

实体是知识图谱中的基本单位,代表现实世界中的对象或概念,如"埃菲尔铁塔"、"纽约"或"苹果公司"。

  • 关系(Relations):

关系描述了实体之间的语义联系,例如"位于"、"创始人"或"主演"。这些关系使得知识图谱能够表达复杂的事实,如"埃菲尔铁塔位于巴黎"。

  • 属性(Attributes):

实体通常具有一系列的属性,这些属性提供了关于实体的额外信息,如"埃菲尔铁塔"的高度或建造年份。

3. Knowledge Graph+RAG

在RAG(Retrieval-Augmented Generation)框架中,我们将文档切成小段(chunk),然后通过检索模块找到与查询相关的文档片段。这种方法可以提高生成文本的准确性和相关性,同时保持生成文本的时效性和专业性。

然而,在实际文本中,chunk与chunk之间是存在关联的,而RAG技术并未充分考虑到这种关联性。为了解决这一问题,我们可以引入知识图谱,将文档中的chunk之间的关系表示为图结构。在检索时,不仅可以找到与查询相关的文档片段,还可以根据知识图谱中的关系找到与查询相关的chunk之间的关联信息。

在每一个实体上,存储了该chunk的信息;在每一个关系上,存储了chunk之间的关系信息。

在进行检索时,我们可以根据语义找到若干个相关实体,对于每个实体,我们还可以遍历到其他相关实体。即使某个实体没有被语义检索直接召回,我们也能通过关联关系将其返回。这种方法有效避免了在文档切分过程中可能出现的信息丢失问题。

通过这种方式,RAG框架不仅提高了检索的准确性和相关性,还增强了对文档内部复杂关系的理解,使生成的文本更加连贯和专业。

4. 误区

在使用RAG+Knowledge Graph的时候,我们需要注意以下几个误区:

  1. 不是直接复用之前的Knowledge Graph,而是需要根据具体的任务重新构建知识图谱;
  2. Knowledge Graph的的构建不是生成传统意义上的实体关系图,而是借用了图数据库的思想,将文档中的chunk之间的关系表示为图结构;

参考

1\] [deeplearning.ai](https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/) ### 欢迎关注我的GitHub和微信公众号,来不及解释了,快上船! [GitHub: LLMForEverybody](https://github.com/luhengshiwo/LLMForEverybody) 仓库上有原始的Markdown文件,完全开源,欢迎大家Star和Fork! ![请添加图片描述](https://i-blog.csdnimg.cn/direct/193bb2866f7046bd8be75f260c4d4628.png)

相关推荐
LiJieNiub1 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_519535771 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a1 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void2 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG2 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的2 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型2 小时前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
科技新知2 小时前
大厂AI各走“开源”路
人工智能·开源
字节数据平台2 小时前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎
TGITCIC2 小时前
LLaVA-OV:开源多模态的“可复现”革命,不只是又一个模型
人工智能·开源·多模态·ai大模型·开源大模型·视觉模型·大模型ai